Global Stability of Beddington Model

Qamar Din1
1Department of Mathematics, The University of Poonch Rawalakot, Rawalakot, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen, L., Linda J.S.: An Introduction to Mathematical Biology. Prentice Hall, New York (2007)

Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin (2000)

Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill, Philadelphia (1988)

Freedman, H.I.: Deterministic Mathematical Models in PopulationEcology, vol. 57 of Monographs and Textbooks in Pure and AppliedMathematics. Marcel Dekker, New York (1980)

Din, Q., Donchev, T.: Global character of a host-parasite model. Chaos Soliton Fract. 54, 1–7 (2013)

Din, Q.: Global stability of a population model. Chaos Soliton Fract. 59, 119–128 (2014)

Din, Q.: Global behavior of a plant-herbivore model. Adv. Differ. Equ. 2015, 119 (2015)

Din, Q.: Global behavior of a host-parasitoid model under the constant refuge effect. Appl. Math. Model. 40(4), 2815–2826 (2016)

Balreira, E.C., Elaydi, S., Luís, R.: Local stability implies global stability for the planar Ricker competition model. Discrete Contin. Dyn. Syst. Ser. B 19(2), 323–351 (2014)

Balreira, E.C., Elaydi, S., Luís, R.: Global dynamics of triangular maps. Nonlinear Anal. Theor. 104, 75–83 (2014)

Din, Q.: Dynamics of a discrete Lotka-Volterra model. Adv. Differ. Equ. 2013, 95 (2013)

Din, Q., Elsayed, E.M.: Stability analysis of a discrete ecological model. Comput. Ecol. Softw. 4(2), 89–103 (2014)

Din, Q., Ibrahim, T.F., Khan, K.A.: Behavior of a competitive system of second-order difference equations. Sci. World J. 2014, 9 (Article ID 283982)

Din, Q.: Stability analysis of a biological network. Netw Biol 4(3), 123–129 (2014)

Din, Q., Khan, K.A., Nosheen, A.: Stability analysis of a system of exponential difference equations. Discrete Dyn. Nat. Soc. 2014, 11 (Article ID 375890)

Din, Q.: Asymptotic behavior of an anti-competitive system of second-order difference equations. J. Egyptian Math. Soc. 24, 37–43 (2016)

Din, Q., Khan, M.A., Saeed, U.: Qualitative Behaviour of Generalised Beddington Model. Z. Naturforsch. A 71(2), 145–155 (2016)

Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamic complexity in predator-prey models framed in difference equations. Nature 225, 58–60 (1975)

Elaydi, S.: Discrete chaos: with applications in science and engineering, 2nd edn. Chapman and Hall/CRC, Boca Raton (2008)

Kapçak, S., Ufuktepe, Ü., Elaydi, S.: Stability and invariant manifolds of a generalized Beddington host-parasitoid model. J. Biol. Dyn. 7(1), 233–253 (2013)

Yang, X.: Uniform persistence and periodic solutions for a discrete predatorprey system with delays. J. Math. Anal. Appl. 316, 161–177 (2006)

Kon, R., Takeuchi, Y.: Permanence of host-parasitoid systems. Nonlinear Anal. 47, 1383–1393 (2001)

Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC Press, Boca Raton (2004)

Pituk, M.: More on Poincare’s and Perron’s theorems for difference equations. J. Diff. Eq. App. 8, 201–216 (2002)

He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predatorprey system. Nonlinear Anal. RWA 12, 403–417 (2011)

Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predatorprey system. Chaos Soliton Fract. 32, 80–94 (2007)

Jing, Z., Yang, J.: Bifurcation and chaos in discrete-time predatorprey system. Chaos Soliton Fract. 27, 259–277 (2006)