Global Solutions for Nonlinear Delay Evolution Inclusions with Nonlocal Initial Conditions

Ioan I. Vrabie1,2
1O. Mayer Institute of Mathematics, Romanian Academy, Iaşi, Romania
2Faculty of Mathematics, “Al. I. Cuza” University, Iaşi, Romania

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aizicovici, S., Lee, H.: Nonlinear nonlocal Cauchy problems in Banach spaces. Appl. Math. Lett. 18, 401–407 (2005)

Aizicovici, S., McKibben, M.: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal. 39, 649–668 (2000)

Aizicovici, S., Papageorgiou, N.S., Staicu, V.: Periodic solutions of nonlinear evolution inclusions in Banach spaces. J. Nonlinear Convex. Anal. 7, 163–177 (2006)

Aizicovici, S., Pavel, N.H., Vrabie, I.I.: Anti-periodic solutions to strongly nonlinear evolution equations in Hilbert spaces. An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi, Secţ. I a Mat. XLIV, 227–234 (1998)

Aizicovici, S., Staicu, V.: Multivalued evolution equations with nonlocal initial conditions in Banach spaces. Nonlinear Differ. Equ. Appl. (NoDEA) 14, 361–376 (2007)

Badii, M., Diaz, J.I., Tesei, A.: Existence and attractivity for a class of degenerate functional parabolic problems. Rend. Semin. Mat. Univ. Padova 78, 109–124 (1987)

Baras, P.: Compacité de l’opérateur definissant la solution d’une équation d’évolution non linéaire $(du/dt)+Au\ni f$ . C. R. Acad. Sci. Sér. I Math. 286, 1113–1116 (1978)

Barbu, V.: Nonlinear Semigroups and Differential Equation in Banach Spaces. Editura Academiei, Bucureşti, Noordhoff (1976)

Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer Monographs in Mathematics, Springer Verlag (2010)

Brezis, H., Strauss, W.: Semilinear elliptic equations in L 1. J. Math. Soc. Jpn. 25, 565–590 (1973)

Byszewski, L.: Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems. J. Math. Anal. Appl. 162, 494–505 (1991)

Caşcaval, R., Vrabie, I.I.: Existence of periodic solutions for a class of nonlinear evolution equations. Rev. Mat. Univ. Complut. Madr. 7, 325–338 (1994)

Castaing, C., Monteiro-Marques, D.P.: Periodic solutions of evolution problems associated with a moving convex set. C. R. Acad. Sci. Paris, Série A 321, 531–536 (1995)

Cârjă, O., Necula, M., Vrabie, I.I.: Viability, Invariance and Applications. Elsevier Horth-Holland Mathematics Studies, vol. 207 (2007)

Deng, K.: Exponential decay of solutions of semilinear parabolic equations with initial boundary conditions. J. Math. Anal. Appl. 179, 630–637 (1993)

Diaz, J.I., Vrabie, I.I.: Existence for reaction diffusion systems: compactness method approach. J. Math. Anal. Appl. 188, 521–540 (1994)

Diestel, J.: Remarks on weak compactness in L 1(μ; X). Glasg. Mat. J. 18, 87–91 (1977)

Diestel, J., Uhl, Jr., J.J.: Vector measures. Math. Surv. 15 (1977)

Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. Interscience Publishers, Inc., New York (1958)

Edwards, R.E.: Functional Analysis. Rinehart and Winston, Holt (1965)

García-Falset, J.: Existence results and asymptotic behaviour for nonlocal abstract Cauchy problems. J. Math. Anal. Appl. 338, 639–652 (2008)

García-Falset, J., Reich, S.: Integral solutions to a class of nonlocal evolution equations. Commun. Contemp. Math. 12, 1032–1054 (2010)

Glicksberg, I.L.: A further genralization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)

Hale, J.: Theory of Functional Differential Equations. Springer Verlag, New York Heidelberg Belin (1977)

Hirano, N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Am. Math. Soc. 120, 185–192 (1994)

Hirano, N., Shioji, N.: Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems. Abstr. Appl. Anal. 3, 183–203 (2004)

Lakshmikantham, V., Leela, S.: Nonlinear Differential Equations in Abstract Spaces. International Series in Nonlinear Mathematics, vol. 2. Pergamon Press (1981)

Lakshmikantham, V., Papageorgiou, N.S.: Periodic solutions of nonlinear evolution inclusions. Comput. Appl. Math. 52, 277–286 (1994)

Li, Y.: Evolution equations with delays; time periodic solutions; asymptotic stability; analytic semigroups. J. Funct. Anal. 261, 1309–1324 (2011). doi: 10.1016/j.jfa.2011.05.001

Mitidieri, E., Vrabie, I.I.: Existence for nonlinear functional differential equations. Hiroshima Math. J. 17, 627–649 (1987)

Mitidieri, E., Vrabie, I.I.: A class of strongly nonlinear functional differential equations. Ann. Math. Pures Appl. CLI(IV), 125–147 (1988)

Paicu, A.: Periodic solutions for a class of differential inclusions in general Banach spaces. J. Math. Anal. Appl. 337, 1238–1248 (2008)

Paicu, A.: Periodic solutions for a class of nonlinear evolution equations in Banach spaces. An. Ştiinţ. “Al. I. Cuza”, Iaşi, Ser. Nouă Mat. LV, 107–118 (2009)

Paicu, A., Vrabie, I.I.: A class of nonlinear evolution equations subjected to nonlocal initial conditions. Nonlinear Anal. 72, 4091–4100 (2010)

Papageorgiou, N.S.: Periodic trajectories for evolution inclusions associated with time-dependent subdifferentials. Ann. Univ. Sci. Budapest 37, 139–155 (1994)

Hu, S., Papageorgiou, N.S.: On the existence of periodic solutions for a class of nonlinear inclusions. Bollettino UMI (7B), 591–605 (1993)

Vrabie, I.I.: Periodic solutions for nonlinear evolution equations in a Banach space. Proc. Am. Math. Soc. 109(3), 653–661 (1990)

Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics, 2nd edn., vol. 75. Longman and John Wiley & Sons (1995)

Vrabie, I.I.: Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions. Nonlinear Anal. 74, 7047–7060 (2011)

Vrabie, I.I.: Nonlinear retarded evolution equations with nonlocal initial conditions. Dynamic Systems and Applications (in print)

Vrabie, I.I.: Existence at the large for nonlinear delay evolution inclusions with nonlocal initial conditions. J. Func. Anal. 262, 1363–1391 (2012)