Giải pháp mượt mà toàn cục cho các mô hình n-chiều của cơ học chất lỏng không nén với dữ liệu khởi đầu nhỏ

Journal of Nonlinear Science - Tập 25 - Trang 157-192 - 2014
Jiahong Wu1,2, Xiaojing Xu3, Zhuan Ye3
1Department of Mathematics, Oklahoma State University, Stillwater, USA
2Department of Mathematics, College of Natural Science, Chung-Ang University, Seoul, Korea
3School of Mathematical Sciences, Beijing Normal University and Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, People’s Republic of China

Tóm tắt

Trong bài báo này, chúng tôi xem xét các mô hình bị giảm chấn n-chiều ( $$n$$ ) của cơ học chất lỏng không nén trong các không gian Besov và thiết lập tính đồng đều toàn cục (theo thời gian) của các nghiệm cổ điển, với điều kiện dữ liệu ban đầu là nhỏ và phù hợp.

Từ khóa

#cơ học chất lỏng #mô hình bị giảm chấn #không gian Besov #nghiệm cổ điển #tính đồng đều toàn cục

Tài liệu tham khảo

Abidi, H., HmidI, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233(1), 199–220 (2007) Adhikar, D., Cao, C., Wu, J., Xu, X.: Small global solutions to the damped two-dimensional Boussinesq equations. J. Differ. Equ. 256, 3594–3613 (2014) Bahour, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011) Beale, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984) Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010) Caflisch, R., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997) Cannone, M., Chen, Q., Miao, C.: A losing estimate for the Ideal MHD equations with application to Blow-up criterion. SIAM J. Math. Anal. 38, 1847–1859 (2007) Cao, C., Regmi, D., Wu, J.: The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differ. Equ. 254, 2661–2681 (2013) Cao, C., Titi, E.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007) Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011) Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. 208, 985–1004 (2013) Cao, C., Wu, J., Yuan, B.: The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion. SIAM J. Math. Anal. 46, 588–602 (2014) Chae, D.: Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymptot. Anal. 38, 339–358 (2004) Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006) Chae, D.: On the continuation principles for the Euler equations and the quasi-geostrophic equation. J. Differ. Equ. 227, 640–651 (2006) Chae, D., Constantin, P., Córdoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65, 1037–1066 (2012) Chae, D.: Constantin, Wu, J.: Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations. Arch. Ration. Mech. Anal. 202, 35–62 (2011) Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasigeostrophic equations. Commun. Math. Phys. 233, 297–311 (2003) Chae, D., Nam, H.: Local existence and blow-up criterion for the boussinesq equations. Proc. R. Soc. Edinburgh Sect. A. 127, 935–946 (1997) Chae, D., Wu, J.: The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math. 230, 1618–1645 (2012) Chemin, C.: Perfect Incompressible Fluids. Oxford University Press, New York (2009) Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation. Commun. Math. Phys. 271, 821–838 (2007) Chen, Q., Miao, C., Zhang, Z.: On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008) Chen, Q., Miao, C., Zhang, Z.: On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces. Arch. Ration. Mech. Anal. 195, 561–578 (2010) Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36, 73–98 (1994) Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44, 603–621 (2007) Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001) Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Commun. Partial Differ. Equ. 21, 559–571 (1996) Constantin, P., Foias, C.: Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988) Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional fluid equations. Arch. Ration. Mech. Anal. 212, 875–903 (2014) Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal. 22, 1289–1321 (2012) Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999) Constantin, P., Wu, J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1103–1110 (2008) Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 159–180 (2009) Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004) Danchin, R.: Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics. Proc. Am. Math. Soc. 141, 1979–1993 (2013) Danchin, R., Paicu, M.: Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys. 290, 1–14 (2009) Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21, 421–457 (2011) Dong, H., Li, D.: Spatial analyticity of the solutions to the subcritical dissipative quasigeostrophic equations. Arch. Ration. Mech. Anal. 189, 131–158 (2008) Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global Cauchy problem of 2D generalized MHD equations. Monatsh. Math. 175, 127–131 (2014) Gancedo, F.: Existence for the \(\alpha \)-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217, 2569–2598 (2008) Hmidi, T., Keraani, S.: Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. Adv. Math. 214, 618–638 (2007) Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with critical dissipation. J. Differ. Equ. 249, 2147–2174 (2010) Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dissipation. Commun. Partial Differ. Equ. 36, 420–445 (2011) Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discret. Contin. Dyn. Syst. 12, 1–12 (2005) Kato, T.: Nonstationary flows of viscous and ideal fluids in \(\mathbb{R}^{3}\). J. Funct. Anal. 9, 296–305 (1972) Kato, T.: Liapunov Functions and Monotonicity in the Euler and Navier–Stokes Equations, Lecture Notes in Mathematics, vol. 1450. Springer, Berlin (1990) Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000) Kiselev, A.: Nonlocal maximum principles for active scalars. Adv. Math. 227, 1806–1826 (2011) Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007) Larios, A., Lunasin, E., Titi, E.: Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-\(\alpha \) regularization, arXiv:1010.5024v1 [math.AP] 25 Oct 2010. Li, D., Rodrigo, J.: Blow up for the generalized surface quasi-geostrophic equation with supercritical dissipation. Commun. Math. Phys. 286, 111–124 (2009) Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002) Miao, C., Wu, J., Zhang, Z.: Littlewood–Paley Theory and its Applications in Partial Differential Equations of Fluid Dynamics. Science Press, Beijing (2012). (in Chinese) Miao, C., Xue, L.: On the global well-posedness of a class of Boussinesq–Navier–Stokes systems. NoDEA Nonlinear Differ. Equ. Appl. 18, 707–735 (2011) Miao, C., Xue, L.: On the regularity of a class of generalized quasi-geostrophic equations. J. Differ. Equ. 251, 2789–2821 (2011) Miura, H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Commun. Math. Phys. 267, 141–157 (2006) Pak, H., Park, Y.: Existence of solution for the Euler equations in a critical Besov space \(B_{\infty,1}^{1}(\mathbb{R}^{d})\). Commun. Partial Differ. Equ. 29, 1149–1166 (2004) Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987) Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983) Sideris, T., Thomases, B., Wang, D.: Long time behavior of solutions to the 3D compressible Euler equations with damping. Commun. Partial Differ. Equ. 28, 795–816 (2003) Shu, E.W., Shu, C.-W.: Small-scale structures in Boussinesq convection. Phys. Fluids 6, 49–58 (1994) Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001, reprint of the 1984 edition, MR 1846644 (2002j:76001). Tran, C.V., Yu, X., Zhai, Z.: On global regularity of 2D generalized magnetohydrodynamics equations. J. Differ. Equ. 254, 4194–4216 (2013) Triebel, H.: Theory of Function Spaces II. Birkhauser, Basel (1992) Wu, J.: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equ. 27, 1161–1181 (2002) Wu, J.: The generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003) Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36, 1014–1030 (2005) Wu, J.: The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18, 139–154 (2005) Wu, J.: Regularity criteria for the generalized MHD equations. Commun. Partial Differ. Equ. 33, 285–306 (2008) Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13, 295–305 (2011) Xu, X.: Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear Anal. 72, 677–681 (2010) Xu, X., Ye, Z.: The lifespan of solutions to the inviscid 3D Boussinesq system. Appl. Math. Lett. 26, 854–859 (2013) Yamazaki, K.: On the global regularity of two-dimensional generalized magnetohydrodynamics system. J. Math. Anal. Appl. 416, 99–111 (2014) Yamazaki, K.: Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation. Nonlinear Anal. 94, 194–205 (2014) Ye, Z.: Blow-up criterion of smooth solutions for the Boussinesq equations. Nonlinear Anal. 110, 97–103 (2014) Ye, Z., Xu, X.: Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system. Nonlinear Anal. 100, 86–96 (2014) Zhang, Z., Liu, X.: On the blow-up criterion of smooth solutions to the 3D ideal MHD equations. Acta Math. Appl. Sinica E 20, 695–700 (2004) Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincar Anal. Non Linaire 24, 491–505 (2007)