Global Plant Ecology of Tropical Ultramafic Ecosystems

The Botanical Review - Tập 89 - Trang 115-157 - 2022
Claudia Garnica-Díaz1, Rosalina Berazaín Iturralde2, Betsaida Cabrera3, Erick Calderón-Morales4, Fermín L. Felipe2, Ricardo García3, José Luis Gómez Hechavarría5, Aretha Franklin Guimarães6, Ernesto Medina7,8, Adrian L. D. Paul9, Nishanta Rajakaruna10,11, Carla Restrepo12, Stefan J. Siebert11, Eduardo van den Berg13, Antony van der Ent9, Grisel Velasquez7, Catherine M. Hulshof14
1Department of Biology, University of Florida, Gainesville, USA
2Jardín Botánico Nacional, Universidad de La Habana, Boyeros, Cuba
3Jardín Botánico Nacional de Santo Domingo, Santo Domingo, República Dominicana
4Integrative Life Sciences, Virginia Commonwealth University, Richmond, USA
5Jardín Botánico de Holguín, Centro de Investigaciones y Servicios Ambientales, Holguín, Cuba
6Department of Applied Botany (Departamento de Botânica Aplicada), Universidade Federal de Lavras, Minas Gerais, Brazil
7Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Miranda, Venezuela
8International Institute of Tropical Forestry, USDA Forest Service, San Juan, Puerto Rico
9Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
10Biological Sciences Department, California Polytechnic State University, San Luis Obispo, USA
11Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
12Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
13Department of Ecology and Conservation, Universidade Federal de Lavras, Minas Gerais, Brazil
14Department of Biology, Virginia Commonwealth University, Richmond, USA

Tóm tắt

Ultramafic ecosystems are renowned for high endemism and habitat specialization. However, most of our understanding of ultramafic plant ecology comes from Mediterranean and temperate climes, raising questions about the generalizability of plant responses to ultramafic soils. This is especially apparent in tropical ultramafic ecosystems which exhibit a wide range of endemism and differentiation between ultramafic and adjacent non-ultramafic soils. Our objectives were two-fold: 1) synthesize our understanding of tropical ultramafic plant ecology, paying particular attention to generalities that may explain variation in endemism and habitat specialization among tropical ultramafic ecosystems; and 2) define an interdisciplinary research agenda using tropical ultramafic ecosystems as a macroecological model. We demonstrate that tropical ultramafic floras are diverse and variable in plant form and function due to the interactive effects of biogeography, climate, and edaphic properties. The variable rates of endemism, specialization, and stress tolerance traits across tropical ultramafic ecosystems have implications for the management and conservation of these diverse systems. Resumen. Los ecosistemas ultramáficos son reconocidos por su endemismo y especialización del hábitat. Sin embargo, la mayor parte de nuestra comprensión de la ecología vegetal ultramáfica proviene de climas mediterráneos y templados, lo que plantea dudas sobre la generalización de las respuestas de las plantas a los suelos ultramáficos. Esto es especialmente evidente en los ecosistemas tropicales ultramáficos que exhiben una amplia gama de endemismo y diferenciación entre suelos tropicales ultramáficos y no ultramáficos adyacentes. Nosotros teníamos dos objetivos: 1) sintetizar nuestra comprensión actual de la ecología de las plantas tropicales ultramáficas, prestando especial atención a las generalidades que pueden explicar la variación en el endemismo y la especialización del hábitat entre los ecosistemas tropicales ultramáficos; y 2) definir una agenda de investigación interdisciplinaria utilizando ecosistemas ultramáficos tropicales como modelo macroecológico. Las floras tropicales ultramáficas son diversas y variables en la forma y función de las plantas debido a los efectos interactivos de la biogeografía, el clima y las propiedades edáficas. Las tasas variables de endemismo, especialización y rasgos de tolerancia al estrés en los ecosistemas tropicales ultramáficos tienen implicaciones para el manejo y conservación de estos diversos sistemas.

Tài liệu tham khảo

Ackerly, D. D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164(S3), S165–S184. https://doi.org/10.1086/368401 Adams, D. (1972) Flowering plants of Jamaica. Mona (Jamaica): University of the West Indies. Adhikari, S., Marcelo-Silva, J., Rajakaruna, N., & Siebert, S.J. (2022). Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Science of The Total Environment, 806, 150659. Aiba, S. I., Sawada, Y., Takyu, M., Seino, T., Kitayama, K., & Repin, R. (2015). Structure, floristics, and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu (Borneo) compared with those on non-ultramafic soils. Australian Journal of Botany, 63, 191–203. https://doi.org/10.1071/BT14238 Alameda, D., Falcón, B., Rijo, G., de Vales, D., Castañeda, A., & Leva, L.M. 2020. Diurnal pollination network of “Cuabales de Cajálbana”, a serpentine shrubwood in western Cuba. Revista Jardín Botánico Nacional, Universidad de La Habana, 41, 25-30. Alexander, E.B., (2018). Serpentine Landscapes of Costa Rica The Santa Elena Peninsula. http://www.soilsandgeoecology.com/Costa%20Rica.pdf Alexander, E. B., Coleman, R. G., Keeler-Wolfe, T., & Harrison, S. P. (2007). Serpentine geoecology of western North America: Geology, soils, and vegetation. OUP USA. Almeda, F., & Martins, A.B. (2015). Pterolepis haplostemona (Melastomataceae): A new serpentine endemic from Goiás, Brazil. Phytotaxa, 201, 233-238. https://doi.org/10.11646/phytotaxa.201.3.8 Álvarez Agudelo, J., & Muñoz Arango, R. H. (1987). Distribución de cromo, níquel y cobalto en la saprolita y en los concentrados de sedimentos fluviales derivados de las dunitas de Medellín. Boletín Geológico, 28, 45–71. Alvarez, H. J. (1983). Estudio del bosque de Susua. In Los bosques de Puerto Rico. Ed Lugo A E. pp 152-166. Depto. de Agricultura de los Estados Unidos, Instituto de Dasonomfa Tropical y Depto. de Recursos Naturales, Edo. Libre Asociado de Puerto Rico, San Juan de Puerto Rico. Anacker, B. L. (2011). Phylogenetic patterns of endemism and diversity. In S. Harrison & N. Rajakaruna, (Eds.), Serpentine: The evolution and ecology of a model system (pp. 49–70). University of California Press. Anacker, B. L. (2014). The nature of serpentine endemism. American Journal of Botany, 101, 219–224. https://doi.org/10.3732/ajb.1300349 Anacker, B. L., Rajakaruna, N., Ackerly, D. D., Harrison, S. P., Keeley, J. E., & Vasey, M. C. (2011). Ecological strategies in California chaparral: Interacting effects of soils, climate, and fire on specific leaf area. Plant Ecology and Diversity, 4, 179–188. https://doi.org/10.1080/17550874.2011.633573 Araujo, M.A., Pedroso, A.V., Amaral, D.C., & Zinn, Y.L. (2014). Paragênese Mineral de Solos Desenvolvidos de Diferentes Litologias na Região Sul de Minas Gerais. Revista Ciências do Solo, 38, 11–25. https://doi.org/10.1590/S0100-06832014000100002 Areces-Berazaín, F., González-Torres, L. R., & Berazaín, R. (2004). Diversidad de plantas (Spermatophyta) en distritos fitogeográficos de Cuba. ¿Sustentan los distritos ultramáficos la mayor diversidad? In R. S. Boyd, A. J. M. Baker, & J. Proctor (Eds.), Memorias de la Cuarta Conferencia Internacional sobre Ecología de Serpentina (pp. 1–89). Jardín Botánico Nacional, La Habana, Cuba. Abril 21–26, 2003. Arguedas, A.S. (2019). The geomicrobiology of iron, cobalt, nickel and manganese in lateritic tropical soils from the Santa Elena Peninsula, Costa Rica. Doctoral dissertation, University of Manchester. Austin, A. T., & Vitousek, P. M. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia, 113, 519–529. https://doi.org/10.1007/s004420050405 Balkwill, K., Campbell-Young, G.J., Fish, L., Munday, J., Frean, M.L., & Stalmans, M. (2011). A new species of Sartidia (Graminae), endemic to ultramafic soils. South African Journal of Botany, 77, 598–607. https://doi.org/10.1016/j.sajb.2010.12.003 Bandara, T., Herath, I., Kumarathilaka, P., Seneviratne, M., Seneviratne, G., Rajakaruna, N., & Vithanage, M. (2017). Role of woody biochar and fungal-bacterial co-inoculation on soil enzyme activity and heavy metal immobilization in serpentine soil. Journal of Soils and Sediments, 17, 665–673. https://doi.org/10.1007/s11368-015-1243-y Barbosa-Camacho, G. (2003). Memoria explicativa mapa geológico del departamento del Cauca – Revisión 01. Ministerio de Minas y Energía, Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear (INGEOMINAS). Barrabé, L., Lavergne, S., Karnadi-Abdelkader, G., Drew, B.T., Birnbaum, P., & Gâteblé, G. (2019). Changing ecological opportunities facilitated the explosive diversification of New Caledonian Oxera (Lamiaceae). Systematic Biology, 68, 460–481. Beaman, J.H. (2005). Mount Kinabalu: Hotspot of plant diversity in Borneo. Biologiske Skrifter 55: 103–127. Benizri, E., & Kidd, P.S. (2018). The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation. In Agromining: Farming for Metals (pp. 157–188). Springer, Cham. Berbert, C.O., Svisero, D.P., Sial, A.N., & Meyer, H.O.A. (1981). Upper mantle material in the Brazilian shield. Earth Science Reviews, 17, 109–133. https://doi.org/10.1016/0012-8252(81)90008-8 Birnbaum, P., Ibanez, T., Pouteau, R., Vandrot, H., Hequet, V., Blanchard, E., & Jaffré, T. (2015). Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island. AoB Plants, 10, plv075. https://doi.org/10.1093/aobpla/plv075 Boneschans, R.B., Coetzee, M.S., & Siebert, S.J. (2015). A geobotanical investigation of the Koedoesfontein Complex, Vredefort Dome, South Africa. Australian Journal of Botany, 63, 324–340. https://doi.org/10.1071/BT14267 Bonis, S.B. (1967). Geologic Reconnaissance of the Alta Verapaz Fold Belt, Guatemala. Dissertation, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, Louisiana, US. Borhidi, A., & Herrera, R. A. (1977). Génesis, clasificación y características de los ecosistemas de sabana de Cuba. Serie Ciencias Biológicas, Academia de Ciencias de Cuba, 1, 115-130. Borhidi, A. (1988a). El efecto ecológico de la roca serpentina a la flora y vegetación de Cuba. Acta Botanica Hungarica, 34, 123–174. Borhidi, A. (1988b). Vegetation dynamics and savannization processes in Cuba. Vegetatio, 75, 177-183. Borhidi, A. (1989). The main vegetation units of Cuba. Acta Botanica Hungarica, 33, 151-185. Borhidi, A. (1992). The serpentine flora and vegetation of Cuba. In A. Baker, J. Proctor, and R. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils: Proceedings of the first International Conference on Serpentine Ecology. (pp. 83–95). Intercept. Borhidi, A. (1996). Phytogeography and vegetation Ecology of Cuba. Akadémiai Kiadó, Budapest. Boyd, R.S., Davis, M.A., & Balkwill, K. (2008). Elemental patterns in Ni hyperaccumulating and non–hyperaccumulating ultramafic soil populations of Senecio coronatus. South African Journal of Botany, 74, 158–162. https://doi.org/10.1016/j.sajb.2007.08.013 Brady, K. U., Kruckeberg, A. R., & Bradshaw Jr., H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36, 243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730 Branco, S. (2010). Serpentine soils promote ectomycorrhizal fungal diversity. Molecular Ecology, 19, 5566–5576. Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press. Brooks, R.R., Wither, E.D., & Zepernick, B. (1977). Cobalt and nickel in Rinorea species. Plant and Soil, 47, 707–712. https://doi.org/10.1007/BF00011041 Brooks, R.R., & Yang, X.H. (1984). Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe and their significance as controlling factors for the flora. Taxon, 33, 392–399. https://doi.org/10.2307/1220976 Brooks, R.R., Reeves, R.D., Baker, A.J.M., Rizzo, J.A., & Ferreira, H.D. (1988). The Brazilian Serpentine Plant Expedition (BRASPEX). National Geographic Research, 6, 205–219. Brooks, R.R., Reeves, R.D., & Baker, A.J.M. (1992). The serpentine vegetation of Goiás State. Proceedings of the First International Conference on Serpentine Ecology. Cámara-Leret R., Frodin, D.G., Adema, F. et al. (2020). New Guinea has the world’s richest island flora. Nature, 584, 579–583. Campbell, L.R., Stone, C.O., Shamsedin, N.M., Kolterman, D.A., & Pollard, A.J. (2013). Facultative hyperaccumulation of nickel in Psychotria grandis (Rubiaceae). Caribbean Naturalist, 1, 1–8. Cancel-Vélez, J.I. (2010). Studies of the population ecology, reproductive biology and conservation status of Crescentia portoricensis (Britton)[Bignoniaceae]. Dissertation, University of Puerto Rico – Mayaguez Campus. Cannon, C.H., Summers, M., Harting, J.R., & Kessler, P.J. (2007). Developing conservation priorities based on forest type, condition, and threats in a poorly known ecoregion: Sulawesi, Indonesia. Biotropica, 39, 747–759. https://doi.org/10.1111/j.1744-7429.2007.00323.x Cano, E. et al. (2014). A phytosociological survey of some serpentine plant communities in the Dominican Republic. Plant Biosystems, 148, 200–212. Capote, R.P., & Berazaín, R. (1984). Clasificación de las formaciones vegetales de Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 5, 27- 75. https://doi.org/10.13140/RG.2.2.13894.70725 Cavelier, J., and Goldstein, G. (1989) Mist and fog interception in elfin cloud forests in Colombia. and Venezuela. Journal of Tropical Ecology, 5(3), 309–322. https://doi.org/10.1017/S0266467400003709 Cedeño-Maldonado, J.A., & Breckon, G.J. (1996). Serpentine endemism in the flora of Puerto Rico. In Caribbean Journal of Science, 32, 348-356. Chapin III, F. S., Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142, 79–92. Chathuranga, P.K.D., Dharmasena, S.K.A.T., Rajakaruna, N., & Iqbal, M.C.M. (2015). Growth and nickel uptake by serpentine and non-serpentine populations of Fimbristylis ovata (Cyperaceae) from Sri Lanka. Australian Journal of Botany, 63, 128–133. https://doi.org/10.1071/BT14232. Chaudhury, K., Datta, S., & Mukherjee, P.K. (2015) Mapping the vegetation of the ultramafic outcrops of Saddle Hills (North Andaman Islands, India) using remote-sensing tools. Australian Journal of Botany, 63, 234–242. https://doi.org/10.1071/BT14243 Coleman, R. G., & Jove, C. (1992). Geological origin of serpentinites. In A. Baker, J. Proctor, and R. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils: Proceedings of the first International Conference on Serpentine Ecology. (pp. 83–95). Andover: Intercept. Costa, F.S., Macedo, M.W.F.S., Araújo, A.C.M., Rodrigues, C.A., Kuramae, E.E., de Barros Alcanfor, S. K., et al. (2019). Assessing nickel tolerance of bacteria isolated from serpentine soils. Brazilian Journal of Microbiology, 50, 705–713. https://doi.org/10.1007/s42770-019-00111-4 Crespo-Medina, M., Twing, K.I., Sánchez-Murillo, R., Brazelton, W.J., McCollom, T.M., & Schrenk, M.O. (2017) Methane dynamics in a tropical Serpentinizing environment: The Santa Elena Ophiolite, Costa Rica. Frontiers in Microbiology, 8, 916. https://doi.org/10.3389/fmicb.2017.00916 Dauphin, G., & Grayum, M. (2005). Bryophytes of the Santa Elena Peninsula and Islas Murciélago, Guanacaste, Costa Rica, with special attention to neotropical dry forest habitats. Lankesteriana, 5, 53–61. https://doi.org/10.15517/lank.v5i1.21158 Datta, S., Chaudhury, K., & Mukherjee, P.K. (2015) Hyperaccumulators from the serpentines of Andaman, India. Australian Journal of Botany, 63, 243–251. https://doi.org/10.1071/BT14244 de Ronde, C.E., & de Wit, M.J. (1994). Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution. Tectonics, 13, 983–1005. https://doi.org/10.1029/94TC00353 Degrood, S.H.; Claassen, V.P.; Scow, K.M. (2005). Microbial community composition on native and drastically disturbed serpentine soils. Soil Biology & Biochemistry, 37, 1427–1435. Dey, A., Hussain, M. F., Barman, M.N. (2018). Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite, India: Implications for petrogenesis, Geoscience Frontiers, 9, 517–529. https://doi.org/10.1016/j.gsf.2017.05.006. Dissanayaka, C.B. (1982). The geology and geochemistry of the Uda Walawe serpentinite. Sri Lanka. Journal National Science Council Sri Lanka, 10, 13–34. Domenech, C., Gali, S., Soler, J.M., Ancco, M.P., Meléndez, W., Rondón, J., Villanova-de-Benavent, C., & Proenza, J.A. (2020) The Loma de Hierro Ni-laterite deposit (Venezuela): Mineralogical and chemical composition. Boletín de la Sociedad Geológica Mexicana, 72, 1–28. https://doi.org/10.18268/bsgm2020v72n3a050620. Doubková, P.; Suda, J.; Sudová, R. (2011). The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biology & Biochemistry, 44, 56–64. Draper, G. (1986). Blueschists and associated rocks in eastern Jamaica and their significance for Cretaceous plate-margin development in the northern Caribbean. Geological Society of America Bulletin, 97, 48–60. Echevarria, G. (2018). Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In A. van der Ent et al. (Eds.) Agromining: Farming for metals. (pp. 215–238). Springer, Cham. Escuder-Viruete, J., Andjić, G., Baumgartner-Mora, C., Baumgartner, P. O., Castillo-Carrión, M., & Gabites, J. (2019). Origin and geodynamic significance of the Siuna Serpentinite Mélange, Northeast Nicaragua: Insights from the large-scale structure, petrology and geochemistry of the ultramafic blocks. Lithos, 340, 1-19. https://doi.org/10.1016/j.lithos.2019.05.002 Ewel, J.J., & Whitmore, J.L. (1973). The Ecological Life Zones of Puerto Rico and the U.S. Virgin Islands. USDA Forest Service, Institute of Tropical Forestry, Research Paper ITF-018 Fernandez-Going, B. M., Harrison, S. P., Anacker, B. L., & Safford, H. D. (2013). Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology, 94, 2007–2018. https://doi.org/10.1890/12-2011.1. Fernando, G.W.A.R., Baumgartner, I.P., & Hofmeister, W. (2013). High temperature metastoatism in ultramafic granulites of highland complex, Sri Lanka. Journal of Geological Survey of Sri Lanka, 15, 163-181. Fernando, D. R., van der Ent, A., Weerasinghe, A. S., Wijesundara, D. S. A., Fernando, G. W. R., Fernando, A. E., ... & Rajakaruna, N. (2022). Assessment of plant diversity and foliar chemistry on the Sri Lankan ultramafics reveals inconsistencies in the metal hyperaccumulator trait. Ecological Research, 37, 215–227. Fiallo, J.L., de Vales, D., Gómez, J.L., & Falcón, B. (2020). Estructura etaria de Phyllanthus chamaecristoides subsp. chamaecristoides (Phyllanthaceae) en Río Piedra, Sierra de Nipe, Santiago de Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 41, 83–85. Figueroa, J., & Schmidt, R. (1981). Structure of a subtropical, lower montane wet forest on serpentine in Maricao, Puerto Rico. In Proceedings of the 1981 Symposium of the Department of Natural Resources of Puerto Rico. San Juan. Fine, P. V., Mesones, I., & Coley, P. D. (2004). Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663–665. https://doi.org/10.1126/science.1098982 Flores, K. E., Skora, S., Martin, C., Harlow, G. E., Rodríguez, D., & Baumgartner, P. O. (2015). Metamorphic history of riebeckite-and aegirine-augite-bearing high-pressure–low-temperature blocks within the Siuna Serpentinite Mélange, northeastern Nicaragua. International Geology Review, 57, 943–977. https://doi.org/10.1080/00206814.2015.1027747 Fritsch, E. (2012) Les sols. In: Bonvallot J, Gay J-C, Habert E (Eds.). Atlas de la Nouvelle-Calédonie. IRD & Congrès de la Nouvelle-Calédonie, Marseille Fundacao Instituto Brasileiro de Geografia e Estatistica -IBGE-. (2012). Manual Técnico da Vegetação Brasileira. 1. Serie Manuais Técnicos em Geociencias, Rio de Janeiro. Galey, M.L., van-der-Ent, A., Iqbal, M.C.M., & Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies, 58, 1-28. https://doi.org/10.1186/s40529-017-0167-9 Gall, J.E., Boyd, R.S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187, 1–21. García, R. (1991). Flora de serpentina en Susua Puerto Rico y Rio Piedras Republica Dominicana. Dissertation, University of Puerto Rico Mayagüez. García, R., & Mejía, R. (1991). Relaciones taxonómicas y fitogeografías entre la flora endémica de serpentina en Susúa, Puerto Rico y Río Piedras, Gaspar Hernández, República Dominicana. Thesis, University of Puerto Rico Mayagüez. García, R.G., & Kolterman, D.A. (1992). Nueva especie de Calliandra (Mimosaceae: Ingeae) del suroeste de Puerto Rico. Caribbean Journal of Science, 28, 56–61. García -Lopez, B.L. (1998). Estudio del Dosel de la Selva Nublada del Biotopo Universitario para la Conservación del Quetzal “Lic. Mario Dary Rivera”. Dissertation, Universidad San Carlos de Guatemala, Ciuidad de Guatemala, Guatemala. García, R., & Mejía, M. (2008). Vegetación y flora de serpentina de la Republica Dominicana. Moscosoa, 16, 217–253. Garnica-Díaz, C. J. (2020). Plant functional diversity across two elevational gradients in serpentine and volcanic soils of Puerto Rico. Master's Thesis, University of Puerto Rico-Mayaguez. Gâteblé, G., Barrabé, L., McPherson, G., Munzinger, J., Snow, N., & Swenson, U. (2019). One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection. Australian Systematic Botany, 31, 448-480. https://doi.org/10.1071/SB18016 Gazel, E., Abbott Jr, R.N., & Draper, G. (2011). Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra-high pressure oceanic complex? Lithos, 125, 393-404. https://doi.org/10.1016/j.lithos.2011.02.021 Gei, V., Echevarria, G., Erskine, P.D., Isnard, S., Fogliani, B., Montargès-Pelletier, E., Jaffré, T., Spiers, K.M., Garrevoet, J. & van der Ent, A., (2020). Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia. Plant and Soil, 457(1), 293–320. Ghose, N.C., Chatterjee, N., Fareeduddin (2014). Geology of the Naga Hills Ophiolite. In: A Petrographic Atlas of Ophiolite. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1569-1_3 Ghose, N. C., Singh, A. K., Dutt, A., & Imtisunep, S. (2021). Significance of aegirine‐bearing metabasic rocks in the metamorphic evolution of the Nagaland Accretionary Prism, northeast India. Geological Journal. Early View. Giller, K.E.; Witter, E.; Mcgrath, S.P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41, 2031–2037. Givnish, T.J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytologist, 207, 297-303. Gómez, J.L., Leyva, O., Hernández, Y., and Reynaldo, E. (2013). Spirotecoma holguinensis (Bignoniaceae), una especie importante en la conservación de los cuabales de Holguín. Bissea, 7(4), 1. Gómez Tapias, J., Montes Ramírez, N. E., Almanza Meléndez, M. F., Alcárcel Gutiérrez, F. A., Madrid Montoya, C. A., & Diederix, H. (2017). Geological Map of Colombia 2015. International Union of Geological Sciences, 40, 201-212. Gómez, J.L. (2020). Importancia de las plantas nodrizas en sitios degradados del matorral xeromorfo espinoso sobre serpentinitas de Holguín, Cuba. Tesis de Maestría en Botánica. Mención Conservación de Plantas. Jardín Botánico Nacional, Universidad de La Habana. González, V. (2007) La vegetación de la Isla de Margarita y sus interrelaciones con el ambiente físico. Memoria de la Fundación La Salle de Ciencias Naturales, 167, 131-161 González Torres, L.R. (2004). Patrones regionales de diversidad de la flora ultramáfica de Cuba. Tesis en opción del Grado Académico Tesis de Maestría en Botánica, Jardín Botánico Nacional, Universidad de La Habana. González-Torres, L. R. (2010). Efecto del fuego en Matorrales Xeromorfos Espinosos sobre serpentinita de Sierra Alta de Agabama, Villa Clara, Cuba. Tesis de Doctorado en Ciencias Biológicas. Jardín Botánico Nacional, Universidad de La Habana. González-Torres L.R. (2011). Impacto del fuego en los matorrales xeromorfos sobre serpentinitas de Cuba. Bissea, 5, 2 González-Torres, L.R., Palmarola, A., González-Oliva, L., Bécquer, E.R., Testé, E., & Barrios, D. (2016). Lista Roja de la Flora de Cuba. Bissea, 10, 1-352. https://doi.org/10.13140/RG.2.2.24056.65288 Goolsby, E. W., & Mason, C. M. (2015). Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Frontiers in Plant Science, 6, 1–4. https://doi.org/10.3389/fpls.2015.00033 Grace, J. B., Safford, H. D., & Harrison, S. (2007). Large-scale causes of variation in the serpentine vegetation of California. Plant and Soil, 293, 121–132. https://doi.org/10.1007/s11104-007-9196-6 Grandcolas, P., Murienne, J., Robillard, T., Desutter-Grandcolas, L., Jourdan, H., Guilbert, E. & Deharveng, L., (2008). New Caledonia: a very old Darwinian island?. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3309–3317. Grayum, M. (2004). Botanical Exploration of the Península de Santa Elena, Costa Rica. Final Report. St. Louis, MO: Missouri Botanical Garden. 12 pp Group, B.F. 2020. Flora do Brasil. Retrieved from: http://floradobrasil.jbrj.gov.br Guimaraes, A. F., Querido, L. C. de A., Coelho, P. A., Santos, P. F., Santos, & R. M. dos. (2019). Unveiling neotropical serpentine flora: A list of Brazilian tree species in an iron-saturated environment in Bom Sucesso, Minas Gerais. Acta Scientiarum, 41, e44594. https://doi.org/10.4025/actascibiolsci.v41i1.44594 Gutiérrez, D.M.N., Pons, M.N., Sánchez, J.A.C., & Echevarria, G. (2018). Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico? Ecological Research, 33, 641-649. https://doi.org/10.1007/s11284-018-1574-4 Haldeman, E.G., Broker, S.B., Blowes, J.H., & Snow, W.E. (1980). Lateritic Nickel deposits at Bonao, Falconbrige Dominicana. (pp. 68–80). 9th Caribbean Geological Conference, Santo Domingo. Dominican Republic. Harrison, S. (2011). Spatial ecology: The effects of habitat patch size, shape, and isolation on ecological processes. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system. (pp. 297–308). University of California Press. Harrison, S., Safford, H. D., Grace, J. B., Viers, J. H., & Davies, K. F. (2006). Regional and local species richness in an insular environment: Serpentine plants in California. Ecological Monographs, 76, 41–56. https://doi.org/10.1890/05-0910 Heads, M. (2008). Panbiogeography of New Caledonia, south‐west Pacific: Basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs and old taxa endemic to young islands. Journal of Biogeography, 35, 2153–2175. https://doi.org/10.1111/j.1365-2699.2008.01977.x Helmer, E.H., Brandeis, T.J., Lugo, A.E., & Kennaway, T. (2008). Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity. Journal of Geophysical Research: Biogeosciences, 113(2), 1–14. Herath, I., P. Kumarathilaka, A. Navaratne, N. Rajakaruna, & Vithanage, M. (2014). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15, 126–138. https://doi.org/10.1007/s11368-014-0967-4 Hewawasam, T., Fernando, G.W.A.R., & Priyashantha, D. (2014). Geo-vegetation mapping and soil geochemical characteristics of the Indikolapelessa Serpentinite Outcrop, Southern Sri Lanka. Journal of Earth Science, 25, 152-168. https://doi.org/10.1007/s12583-014-0409-7 Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A., & Vitousek, P. M. (1990). Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 71, 478–491. Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. Global Ecology and Biogeography, 29, 1634–1650. https://doi.org/10.1111/geb.13151 Hulshof, C. M., & Spasojevic, M. J. (2021). Data from: The edaphic control of plant diversity, Dryad, Dataset, https://doi.org/10.5061/dryad.sqv9s4n1r. Hulshof, C. M., Waring, B. G., Powers, J. S., & Harrison, S. P. (2020). Trait‐based signatures of cloud base height in a tropical cloud forest. American Journal of Botany, 107, 886–894. https://doi.org/10.1002/ajb2.1483 Ign, S.B., Bonis, O., Bohnenberger, G., Dengo, & Icaiti. (1977). Mapa geológico de la República de Guatemala - escala 1:500,000. Instituto Geográfico Nacional, Ciudad de Guatemala, Guatemala. International Union for Conservation of Nature -IUCN-. (2015). IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/ Isnard, S., L’huillier, L., Rigault, F., & Jaffré, T. (2016). How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant and Soil, 403, 53–76. https://doi.org/10.1007/s11104-016-2910-5 Iturralde-Vinent, M. A. (2004). La Paleogeografía del Caribe y sus implicaciones para la biogeografía histórica. Revista del Jardín Botánico Nacional, Universidad de La Habana, 25-26, 49-78. Jacobi, C.M., Carmo, F.F., & Campos, I.C. De. (2011). Soaring extinction threats to endemic plants in brazilian metal-rich regions. Journal of the Human Environment, 40, 540–543. Jaffré, T., & Latham, M. (1974) Contribution à l'étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte Ouest de la Nouvelle Calédonie: le Boulinda. Adansonia, 14, 311–336 Jaffré, T., Brooks, R.R., Lee, J., & Reeves, R.D. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science, 193, 579-580. https://doi.org/10.1126/science.193.4253.579 Jaffré, T. (1980). Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de l’ORSTOM, Paris. Jaffré, T. (1992). Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. The vegetation of ultramafic (serpentine) soils Proceedings of the First International Conference on Serpentine Ecology, pp101–107. Jaffré, T., Pillon, Y., Thomine, S., & Merlot, S. (2013). The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Frontiers in Plant Science, 4, 279. https://doi.org/10.3389/fpls.2013.00279 Janzen, D.H. (1998). Conservation analysis of the Santa Elena property, Peninsula Santa Elena, northwestern Costa Rica. Report to the Government of Costa Rica. Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Jenny, H. (1980). The soil resource, origin, and behaviour. Springer-Verlag. Jestrow, B., Gutiérrez, J., & Fransisco-Ortega, F. (2012). Islands within islands: a molecular phylogenetic study of the Leucocroton alliance (Euphorbiaceae) across the Caribbean Islands and within the serpentinite archipelago of Cuba. Journal of Biogeography, 39, 452-464. https://doi.org/10.2307/41440567 Jiménez, Q., Carrillo, E., & Kappelle, M. (2016). Chapter 9. The northern Pacific lowland seasonal dry forests of Guanacaste and the Nicoya Peninsula. In Costa Rican Ecosystems. (pp. 247–289). University of Chicago Press. Kausel, G. (1991). Study of heavy metal tolerant flora in Botswana. Botswana Notes and Records 23: 159–174. Kazakou, E., Dimitrakopoulos, P. G., Baker, A. J. M., Reeves, R. D., & Troumbis, A. Y. (2008). Hypotheses, mechanisms and trade‐offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biological Reviews, 83, 495–508. https://doi.org/10.1111/j.1469-185X.2008.00051.x Kilpatrick, B.E. (1968). Geology and geochemistry Wanamu-Blue mountains area Waini SW, Guyana. United States. Department of the Interior Geological Survey. Retrieved from: https://pubs.usgs.gov/of/1968/0157/report.pdf Konečná, V., Yant, L., & Kolář, F. (2020). The evolutionary genomics of serpentine adaptation. Frontiers in Plant Science, 11, 2004. https://doi.org/10.3389/fpls.2020.574616 Koosaletse-Mswela, P., Przybyłowicz, W.J., Cloete, K.J., Barnabas, A.D., Torto, N., & Mesjasz-Przybyłowicz, J. (2015). Quantitative mapping of elemental distribution in leaves of the metallophytes Helichrysum candolleanum, Blepharis aspera, and Blepharis diversispina from Selkirk Cu-Ni mine, Botswana. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 363, 188–193. https://doi.org/10.1016/j.nimb.2015.09.005 Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263. Kruckeberg, A. R. (1951). Intraspecific variability in the response of certain native plant species to serpentine soil. American Journal of Botany, 38, 408–419. https://doi.org/10.1002/j.1537-2197.1951.tb14842.x Kruckeberg, A. R. (1984). California serpentines: Flora, vegetation, geology, soils, and management problems. University of California Press. Kruckeberg A. R. (1991). An essay: Geoedaphics and island biogeography for vascular plants. Aliso, 13, 225–238. https://doi.org/10.5642/aliso.19911301.11 Kumarathilaka, P., Oze, C., & Vithanage, M. (2016). Perchlorate mobilization of metals in serpentine soils. Applied Geochemistry, 74, 203-209. https://doi.org/10.1016/j.apgeochem.2016.10.009 Kunonga, N. I., Nhiwatiwa, T., Tembani, M., & Kativu, S. (2019). Aspects of the population biology, life history and threats to Aloe ortholopha Christian and Milne-Redh.: A serpentine endemic from the northern Great Dyke of Zimbabwe. Bothalia – African Biodiversity and Conservation, 49, a2396. https://doi.org/10.4102/abc.v49i1.2396 Latham, M., Quantin, P., & Aubert, G. (1978). Etude des sols de la Nouvelle-Calédonie : nouvel essai sur la classification, la caractérisation, la pédogenèse et les aptitudes des sols de Nouvelle-Calédonie : carte pédologique de la Nouvelle-Calédonie à 1/1 000 000 : carte d'aptitudes culturale et forestière des sols de Nouvelle-Calédonie à 1/1 000 000. ORSTOM, Paris. Lau, J. A., McCall, A., Davies, K., McKay, J. K., Wright, J. (2008) Herbivores and edaphic factors constrain the realized niche of a native plant. Ecology 89:754–762 Lazcano, J. C., López, P. I., Peña, E., & Berazaín, R. (1999). Recuperación natural de la flora serpentinícola de “Lomas de Canasí”: una alternativa para la conservación. Revista del Jardín Botánico Nacional, Universidad de La Habana, 20, 31-39. Lewis, J. F., Draper, G., Fernández, J. P., Espaillat, J., & Jiménez, J. (2006). Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: A review of their occurrence, composition, origin, emplacement and Ni-laterite soil formation. Geologica Acta, 4, 237–264. Losos, J.B., & Ricklefs, R.E. (2009). Adaptation and diversification on islands. Nature, 457, 830-836. López, A. (2013). Contribución al catálogo de flora cubana: endemismos de suelos derivados de ofiolitas. Botanica Complutensis, 37, 135-152. https://doi.org/10.5209/rev_BOCM.2013.v37.42276 López, D., Gómez, J.L., Sánchez, J.A., & González, J.L. (2016). Rasgos de semillas y germinación de Spirotecoma holguinensis (Bignoniaceae), árbol endémico de las serpentinas del este de Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 37, 191-201. López, S., Benizri, E., Erskine, P.D., Morel, J.L., Lee, G., Permana, E., Echevarria, G., & van der Ent, A. (2019a). Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on metal hyperaccumulation. Journal of Geochemical Exploration, 202, 113–127. https://doi.org/10.1016/j.gexplo.2019.03.011 López, S., van der Ent, A., Erskine, P.D., Tjoa, A., Benizri, E., Lee, G., Permana, E., Lopez, S., & Echevarria, G. (2019b). Rhizosphere chemistry and above-ground elemental fractionation of nickel hyperaccumulator species from Weda Bay (Indonesia). Plant and Soil, 436, 543–563. https://doi.org/10.1007/s11104-019-03954-w Losfeld, G., L’huillier, L., Fogliani, B., Jaffré, T., & Grison, C. (2015). Mining in New Caledonia: environmental stakes and restoration opportunities. Environmental Science and Pollution Research, 22, 5592-5607. https://doi.org/10.1007/s11356-014-3358-x MacArthur, R. H., & E. O. Wilson. (1967). The theory of island biogeography. Princeton University Press. Maresch, W.V. (1975) The geology of northeastern Margarita Island, Venezuela: A contribution to the study of Caribbean plate margins. Geologische Rundschau, 64, 846–883. https://doi.org/10.1007/BF01820701 Martens, S. N., & Boyd, R. S. (1994). The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia, 98, 379–384. https://doi.org/10.1007/BF00324227 Martens, U., Ortega-Obregón, C., Estrada, J., & Valle, M. (2012). Metamorphism and Metamorphic Rocks. In G. E. Alvarado & J. Bundschuh (Eds.). Central America, Two Volume Set: Geology, Resources and Hazards. (pp. 485–522). CRC Press. Magaña, V., Amador, J.A., & Medina, S. (1999). The Midsummer Drought over Mexico and Central America. Journal of Climate, 12, 1577-1588. Matteucci, S. (1987) The vegetation of Falcón State, Venezuela. Vegetatio, 70, 67-91. Matos, A., & Bruzón, N. (2003). Flora asociada a un sitio minado recultivado con sustitución de especies. Centro Agrícola, 30, 84-89. Matos, J., & Torres, A. (2000). Primeros estadios sucesionales del cuabal de las Serpentinas de Santa Clara. Revista del Jardín Botánico Nacional, Universidad de La Habana, 21(2), 167-184. Maurizot, P., Robineau, B., Vendé-Leclerc, M., & Cluzel, D. (2020). Chapter 1 Introduction New Caledonia: geology, geodynamic evolution and mineral resources. Geological Society London, Memoirs, 51, 1–12. https://doi.org/10.6084/m9.figshare.c.4984385 McAlister, R.L., Kolterman, D.A. & Pollard, A.J. (2015). Nickel hyperaccumulation in populations of Psychotria grandis (Rubiaceae) from serpentine and non-serpentine soils of Puerto Rico. Australian Journal of Botany, 63, 85-91. https://doi.org/10.1071/BT14337 McCoy, S., Jaffré, T., Rigault, F., & Ash, J.E. (1999). Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography, 26, 579-594. Medina, E., Cuevas, E., Figueroa, J., & Lugo, A. E. (1994). Mineral content of leaves from trees growing on serpentine soils under contrasting rainfall regimes in Puerto Rico. Plant and Soil, 158, 13–21. https://doi.org/10.1007/BF00007912 Mejia, V. M., & Durango, J. R. (1981–1982). Geología de las lateritas niquelíferas de Cerro Matoso S.A. Boletín de Geología. Bucaramanga (Colombia), 15, 99–116. https://doi.org/10.18273/revbol Melluso, L., Morra, V., Brotzu, P., Tommasini, S., Renna, M.R., Duncan, R.A., & D'amelio, F. (2005). Geochronology and petrogenesis of the Cretaceous Antampombato-Ambatovy complex and associated dyke swarm, Madagascar. Journal of Petrology, 46, 1963-1996. https://doi.org/10.1093/petrology/egi044 Mendi, D.J., González-Jiménez, J.M., Proenza, J.A., Urbani, F., & Gervilla, F. (2020) Petrogenesis of the chromitite body from the Cerro Colorado ophiolite, Paraguaná Peninsula, Venezuela. Boletín de la Sociedad Geológica Mexicana, 72, A280719. https://doi.org/10.18268/BSGM2020v72n3a280719 Merlot, S., de la Torre, V. S. G., Fogliani, B., Brinon, L. C., Burtet-Sarramegna, V., Majorel-Loulergue, C., & Grison, C. (2015). Diversity and evolution of the molecular mechanisms involved in nickel hyperaccumulation in plants. In 13th SGA Biennial Meeting on Mineral Resources in a Sustainable World, Association Scientifique de Geologie & Applications (ASGA). (p. 3). Aug 2015, Nancy, France. Mesjasz-Przybylowicz, J., Przybylowicz, W., Barnabas, A., & van der Ent, A. (2015). Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytologist, 209(4), 1513–1526. https://doi.org/10.1111/nph.13712 Middleton, D.J., Armstrong, K., Baba, Y., Balslev, H., Chayamarit, K., Chung, R.C.K., Conn, B., Fernando, E.S., et al. (2019). Progress on Southeast Asia’s Flora projects. Gardens' Bulletin (Singapore), 71, 267–319. https://doi.org/10.26492/gbs71(2).2019-02 Migula, P., Przybyłowicz, W.J., Mesjasz–Przybyłowicz, J., Augustyniak, M., Nakonieczny, M., Głowacka, E., & Tarnawska, M. (2007). Micro–PIXE studies of elemental distribution in sap–feeding insects associated with Ni hyperaccumulator, Berkheya coddii. Plant and Soil, 293, 197–207. https://doi.org/10.1007/s11104-007-9231-7 Ministry of Environment and Renewable Energy (2012). The National Red List 2012 of Sri Lanka; Conservation Status of the Fauna and Flora. Biodiversity Secretariat of the Ministry of Environment and National Herbarium, Department of National Botanic Gardens. Mittermeier, R.A., Gil, P.R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., et al. (2005). Hotspots revisited. Earth's biologically richest and most endangered terrestrial ecoregions. Conservaçao Internacional, 22, 16. Mohanty, M., Pattnaik, M.M., Mishra, A.K., & Patra, H.K. (2012) Bio-concentration—an in-situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environmental Monitoring and Assessment, 184, 1015–1024. https://doi.org/10.1007/s10661-011-2017-7 Monedero, C., & González, V.C. (1994) Análisis cuantitativo de la estructura florística de una selva nublada tropical (Loma de Hierro, Venezuela). Acta Biologica Venezuelica, 16, 1–18 Moores, E. M. (2011). Serpentinites and other ultramafic rocks: Why they are important for earth’s history and possibly for its future. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system. (pp. 3–28). University of California Press. Morat, P. (1993). Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters, 1, 72–81. https://doi.org/10.2307/2999750 Morgenthal, T., Maboeta, M., Van Rensburg, L., & Bredenkamp, G.J. (2004). Revegetation of heavy metal contaminated mine dumps using locally serpentine-adapted grassland species. South African Journal of Botany, 70(5), 784–789. https://doi.org/10.1016/S0254-6299(15)30180-0 Morrey, D.R., Balkwill, K., & Balkwill, M.J. (1989). Studies on serpentine flora: Preliminary analyses of soils and vegetation associated with serpentinite rock formations in the south-eastern Transvaal. South African Journal of Botany, 55, 171–177. https://doi.org/10.1016/S0254-6299(16)31203-0 Munasinghe, T., & Dissanayake, C. B. (1980). Is the Highland eastern Vijayan boundary in Sri Lanka a possible mineralized belt? Economic Geology, 75, 775–777. https://doi.org/10.2113/gsecongeo.74.6.1495 Munzinger, J., Morat, P., Jaffré, T., Gâteblé, G., Pillon, Y., Rouhan, G., Bruy, D., Veillon, J.M., & Chalopin, M. (2021). FLORICAL: Checklist of the vascular indigenous flora of New Caledonia. Retrieved From: http://publish.plantnet-project.org/project/florical, [continuously updated] Murcia, L.M. (1980). Definición del denominado Complejo Igneo Básico en Colombia y petrogénesis de su parte meridional. Geología Colombiana, 11, 45–65. Retrieved from: https://revistas.unal.edu.co/index.php/geocol/article/view/30411 Naipal, R., Kroonenberg, S., & Mason, P. R. (2019). Ultramafic rocks of the Paleoproterozoic greenstone belt in the Guiana Shield of Suriname, and their mineral potential. Mededeling Geologisch Mijnbouwkundige Dienst Suriname, 29, 143-146. Newcomb, W.E. (1975). Geology, Structure, and Metamorphism of the Chuacus group, Rio Hondo Quadrangle and Vecinity, Guatemala. Dissertation, State University of New York at Binghamton, Binghamton, New York, US. Nivia Guevara, A. (2001). Mapa Geológico Departamento del Valle del Cauca - Escala 1:250,000. Memoria Explicativa. Ingeominas, Bogota, Colombia. Nkoane, B.B.M., Sawula, G.M., Wibetoe, G., & Lund, W. (2005). Identification of Cu and Ni indicator plants from mineralised locations in Botswana. Journal of Geochemical Exploration, 86, 130–142. https://doi.org/10.1016/j.gexplo.2005.03.003 Nkrumah, P.N., Echevarria, G., Erskine, P.D. & van der Ent, A., (2018). Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecological research, 33(3), 675–685. O’Dell, R. E., & Rajakaruna, N. (2011). Intraspecific variation, adaptation, and evolution. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system. (pp. 97–138). University of California Press. Oijagbe, I.; Abubakar, B.Y.; Edogbanya, P.R.O.; Suleiman, M.O.; Olurunmola, J.B. (2019). Effects of heavy metals on soil microbial biomass carbon. MOJ Biol Med, 4, 30–32. Ortega-Montero, C.R. (1981–1982). Complejo ofiolítico en la cuenca del río Guapi. Boletín de Geología. Bucaramanga (Colombia), 15, 117–123. https://doi.org/10.18273/revbol Ortiz-Hernández, L.E., Escamilla-Casas, J.C., Flores-Castro, K., Ramírez-Cardona, M., & Acevedo-Sandoval, O. (2006). Características geológicas y potencial metalogenético de los principales complejos ultramáficos-máficos de México. Boletín de la Sociedad Geológica Mexicana, 58, 161-181. https://doi.org/10.18268/bsgm2006v58n1a6 Oviedo, R., Faife, M., Noa-Monzón, A., Arroyo, J., Valiente-Banuet, A., & Verdú, M. (2013). Facilitation allows plant coexistence in Cuba serpentine soils. Plant Biology, 1-6. https://doi.org/10.1111/plb.12116 Oze, C., Skinner, C., Schroth, A. W., & Coleman, R. G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the central coast range of California. Applied Geochemistry, 23, 3391–3403. https://doi.org/10.1016/j.apgeochem.2008.07.014 Pal, A., Choudhuri, P., Dutta, S., Mukherjee, P.K., & Paul, A.K. (2004) Isolation and characterization of nickel-resistant microflora from ultramafic soils of Andaman. World Journal of Microbiology and Biotechnology, 20, 881–886. 10.1007/ s11274-004-2776-1 Pal, A., Dutta, S., Mukherjee, P. K., & Paul, A. K. (2005) Occurrence of heavy metal-resistance in microflora from ultramafic soil of Andaman. Journal of Basic Microbiology, 45, 207–218. https://doi.org/10.1002/jobm.200410499 Pal, A., Ghosh, S., & Paul, A.K. (2006) Biosorption of cobalt by fungi from ultramafic soil of Andaman. Bioresource Technology, 97, 1253–1258. 10.1016/j. biortech.2005.01.043 Pal, A., & Paul, A.K. (2012) Accumulation of polyhydroxyalkanoates by rhizobacteria underneath nickel-hyperaccumulators from ultramafic ecosystem. Journal of Environmental Polymer Degradation, 20, 10–16. https://doi.org/10.1007/s10924-011-0355-8 Pal, A., Wauters, G., & Paul, A.K. (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant and Soil, 293, 37–48. https://doi.org/10.1007/s11104-007-9195-7 Palm, E. R., & Van Volkenburgh, E. (2014). Physiological adaptation of plants to serpentine soil. In N. Rajakaruna, R. S. Boyd, & T. B. Harris (Eds.), Plant ecology and evolution in harsh environments. (pp. 129–148). Nova Science Publishers. Paul, A. L. D., Isnard, S., Brearley, F. Q., Echevarria, G., Baker, A. J. M., Erskine, P. D., & van der Ent, A. (2022). Stocks and biogeochemical cycling of soil-derived nutrients in an ultramafic rainforest in New Caledonia. Forest Ecology and Management, 509, 120049. Paul, A. L. D, Isnard, S., Wawryk, C., Erskine, P. D., Echevarria, G., Baker, A. J. M., Kirby, J. K., & van der Ent, A. (2021). Intensive cycling of nickel in a New Caledonian Forest dominated by hyperaccumulator trees. The Plant Journal, 107, 1040–1055. https://doi.org/10.1111/tpj.15362 Paun, O., Turner, B., Trucchi, E., Munzinger, J., Chase, M.W., & Samuel, R. (2016). Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Systematic Biology, 65, 212-227. Pelletier, B. (2006). Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In Compendium of marines species from New Caledonia, Forum BIOdiversité des Ecosystèmes Coralliens, 30 octobre–4 novembre 2006, Nouméa, Nouvelle-Calédonie (eds C. Payri & B. Richer de Forges). Documents Scientifiques et Techniques IRD, II 7, pp. 17–30. Nouméa, France: Institut de Recherche pour le Développement. Pessoa-Filho, M., Barreto, C. C., dos Reis Junior, F. B., Fragoso, R. R., Costa, F. S., de Carvalho Mendes, I., et al. (2015). Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie van Leeuwenhoek, 107, 935–949. https://doi.org/10.1007/s10482-015-0386-6 Phillipson, P.B., Lowry, P.P., Andriamahefaviro, L., Antilahimena, P., & Birkinshaw, C. (2010). Floristic inventory of the Ambatovy-Analamay mine site and comparison to other sites in Madagascar. In S. M. Goodman & V. Mass (Eds.), Biodiversity, exploration, and conservation of the natural habitats associated with the Ambatovy project. Malagasy Nature, v. 3 (pp. 44–76). Antananarivo: Association Vahatra Pillon, Y., González, D. A., Randriambanona, H., Lowry, P. P., Jaffré, T., & Merlot, S. (2019). Parallel ecological filtering of ultramafic soils in three distant island floras. Journal of Biogeography, 46, 2457–2465. https://doi.org/10.1111/jbi.13677 Pillon, Y., Barrabe, L., & Buerki, S. (2017). How many genera of vascular plants are endemic to New Caledonia? A critical review based on phylogenetic evidence. Botanical Journal of the Linnean Society, 183, 177-198. Pillon, Y., Munzinger, J., Amir, H., & Lebrun, M. (2010). Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology, 98, 1108–1116. https://doi.org/10.1111/j.1365-2745.2010.01689.x Pollard, A. J., Reeves, R. D., & Baker, A. J. M. (2014). Facultative hyperaccumulation of heavy metals and metalloids. Plant Science, 217–218, 8–17. https://doi.org/10.1016/j.plantsci.2013.11.011 Porter, S.S.; Chang, P.L.; Conow, C.A.; Duham, J.P.; Friesen, M.L. (2017). Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. International Society for Microbial Ecology, 11, 248–262. Prendergast, M.D. (2013). Landscape evolution, regolith formation and Nickel laterite development in the northern part of the Great Dyke, Zimbabwe. South African Journal of Geology, 116, 219–240. https://doi.org/10.2113/gssajg.116.2.219 Proctor, J., & Cole, M. M. (1992). The ecology of ultramafic areas in Zimbabwe. The ecology of areas with serpentinized rocks, 17, 313–331. https://doi.org/10.1007/978-94-011-3722-5_12 Proctor, J., Baker, A. J. M., Van Balgooy, M.M.J., Bruijnzeel, L.A., Jones, S.H., & Madulid, D.A. (2000). Mount Bloomfield, Palawan, Philippines: forests on greywacke and serpentinized peridotite. Edinburgh Journal of Botany, 57, 121-139. doi:https://doi.org/10.1017/S0960428600000081 Proctor, J. (2003). Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics, 6, 104–124. https://doi.org/10.1078/1433-8319-00045 Quimado, M.O., Fernando, E.S., Trinidad, L.C., & Doronila, A. (2015). Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Australian Journal of Botany, 63, 103–110. https://doi.org/10.1071/BT14284 Quintela-Sabarís, C., Faucon, M. P., Repin, R., Sugau, J. B., Nilus, R., Echevarria, G., & Leguédois, S. (2020). Plant functional traits on tropical ultramafic habitats affected by fire and mining: Insights for reclamation. Diversity, 12, 248. https://doi.org/10.3390/d12060248 Rajakaruna, N. (2018). Lessons on evolution from the study of edaphic specialization. The Botanical Review, 84, 39–78. https://doi.org/10.1007/s12229-017-9193-2. Rajakaruna, N., & Bohm, B. A. (2002). Serpentine and its vegetation: a preliminary study from Sri Lanka. Journal of Applied Botany, 76(1/2), 20-28. Rajakaruna, N., & Baker, A.J.M. (2004). Serpentine: a model habitat for botanical research in Sri Lanka. Ceylon Journal of Science (Biological Sciences), 2, 1-19. Rajakaruna, N., & Boyd, R. S. (2009). Advances in serpentine geoecology: A retrospective. Northeastern Naturalist, 16, 1–7. https://doi.org/10.1656/045.016.0501 Rajapaksa, A.U., Vithanage, M., Oze, C., Bandara, W.M., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189, 1-9. https://doi.org/10.1016/j.geoderma.2012.04.019 Ramotoroko, C.D., Ranganai, R.T., & Nyabeze, P. (2016). Extension of the Archaean Madibe-Kraaipan granite-greenstone terrane in southeast Botswana: Constraints from gravity and magnetic data. Journal of African Earth Sciences, 123, 39–56. https://doi.org/10.1016/j.jafrearsci.2016.06.016 Reddy, R.A., Balkwill, K., & McLellan, T. (2009). Plant species richness and diversity of the serpentine areas on the Witwatersrand. Plant Ecology, 201, 365–381. https://doi.org/10.1007/978-90-481-2798-6_1 Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 249, 57–65. https://doi.org/10.1023/A:1022572517197 Reeves, R. D., Baker, A. J. M., Borhidi, A., & Berazaín, R. (1996). Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytologist, 133, 217–224. https://doi.org/10.1111/j.1469-8137.1996.tb01888.x. Reeves, R. D., Baker, A. J. M., Borhidi, A., & Berazain, R. (1999). Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany, 83, 29–38. https://doi.org/10.1006/anbo.1998.0786 Reeves, R.D., Baker, A.J.M., & Romero, R. (2007a). The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. Journal of Geochemical Exploration, 93, 153–159. https://doi.org/10.1016/j.gexplo.2007.04.002 Reeves, R.D., Baker, A.J.M., Becquer, T., Echevarria, G., & Miranda, Z.J.G. (2007b). The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293: 107–119. https://doi.org/10.1007/s11104-007-9192-x Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, 407–411. https://doi.org/10.1111/nph.14907 Reeves, R. D., Macfarlane, R. M., & Brooks, R. R. (1983a). Accumulation of nickel and zinc by western North American genera containing serpentine‐tolerant species. American Journal of Botany, 70, 1297–1303. https://doi.org/10.2307/2443420 Reeves, R.D., Brooks, R.R., & Dudley, T.R. (1983b). Uptake of nickel by species of Alyssum, Bornmuellera, and Other Genera of Old World. Tribus Alysseae. Taxon, 32 (2), 184-192. https://doi.org/10.2307/1221970 Reiche-García, H.E. (2015). Propuesta para la Actualización del Plan de Manejo del Biotopo Universitario del Quetzal BUCQ “Mario Dary Rivera”. Dissertation. Universidad San Carlos de Guatemala, Ciudad de Guatemala, Guatemala. Rivera, Z.E., Toro, B.L., & Gomez, R. (1984). La vegetacion arborea en una ladera del bosque de Maricao. In Los Bosques de Puerto Rico. Ed. A E Lugo. (pp 78–94). Depto. de Agricultura de los Estados Unidos, Instituto de Dasonomfa Tropical y Depto. de Recursos Naturales, Edo. Libre Asociado de Puerto Rico, San Juan de Puerto Rico. Rodríguez, M.E., Mercado, O., & Martínez, M.A. (1987). Actividad biológica y degradación del suelo en algunas áreas de la zona minera de Moa. Revista del Jardín Botánico Nacional, Universidad de La Habana, 8(3), 77-108. Rodríguez, M.E., Oviedo, R., Mayans, Y., Torres-Arias, Y., Palacio, G., & Durruthy, M.D. (2004). Native plant resistant or sensitive to invironmentals impacts produced by mining activity in Moa. In: Boyd, R.S., Baker, A.J.M. & Proctor, J. (Eds). (pp. 339–343). Ultramafic rocks: their soils, vegetation, and fauna. Proceedings of the Fourth International Conference on Serpentine Ecology. Rosito-Monzon, J.C. (1999). Estudio Floristico de la Comunidad del Cipresillo (Taxus globosa Schlecht.), en los Cerros Pinalon, Guaxabajá y Mulujá en la Sierrade Las Minas. Dissertation, Universidad San Carlos de Guatemala, Ciudad de Guatemala, Guatemala. Rue, M., Paul, A.L.D., Echevarria, G., Van Der Ent, A., Simonnot, M.O., & Morel, J.L. (2020). Uptake, translocation and accumulation of nickel and cobalt in: Berkheya coddii, a 'metal crop' from South Africa. Metallomics, 12, 1278–1289. https://doi.org/10.1039/d0mt00099j Samantaray, S., Rout, G.R., & Das, P. (2001) Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil. Environmental Technology, 22, 1147–1154. https://doi.org/10.1080/09593332208618204 Samantaray, S., Rout, G.R., & Das, P. (1999). Studies on the uptake of heavy metals by various plant species on chromite minespoils in sub-tropical regions of India. Environmental Monitoring and Assessment, 55, 389–399. https://doi.org/10.1023/A:1005982915175 Samithri, Y.A.S. (2015). Ecology of the serpentine vegetation at Ussangoda, Sri Lanka. Masster’s Thesis, University of Peradeniya, Sri Lanka Sánchez-Murillo, R., Gazel, E., Schwarzenbach, E.M., Crespo-Medina, M., Schrenk, M.O., Boll, J., & Gill, B.C. (2014). Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: An analog of a humid early Earth? Geochemistry, Geophysics, Geosystems, 15, 1783-1800. https://doi.org/10.1002/2013GC005213 Sánchez, J.A., López, D., Fernández, I., Gómez, J.L., & Pernús, M. (2017). Depredación de semillas de Acacia belairioides (Fabaceae) por brúquidos (Coleoptera: Chysomelidae: Bruchinae) y sus efectos en la germinación. Acta Botánica Cubana, 216, 55-61. Sanz, V., Riveros, M., Gutiérrez, M., & Moncada, R. (2011) Vegetación y uso de la tierra en el Estado Nueva Esparta, Venezuela: un análisis desde la ecología del paisaje. Interciencia, 16, 881-887. San Emeterio, L. (2001). Estudio de la Flora y de la Vegetación de las Cuencas Juan de Paz y Las Cañas, Sierra de Las Minas, Guatemala. Dissertation, Universidad de Navarr, Navarra, Spain. Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245–269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430 Scoon, R.N., & Viljoen, M.J. (2019). Geoheritage of the eastern limb of the Bushveld Igneous Complex, South Africa: a uniquely exposed layered igneous intrusion. Geoheritage, 11, 1723–1748. https://doi.org/10.1007/s12371-019-00360-7 Seregin, I., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277. https://doi.org/10.1134/S1021443706020178 Sianta, S. A., & Kay, K. M. (2019). Adaptation and divergence in edaphic specialists and generalists: Serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. American Journal of Botany, 106, 690–703. https://doi.org/10.1002/ajb2.1285 Siebert, S.J., Van Wyk, A.E., & Bredenkamp, G. J. (2001). Endemism in the flora of ultramafic areas of Sekhukhuneland, South Africa. South African Journal of Science, 97, 529–532. Siebert, S.J., Van Wyk, A.E., & Bredenkamp, G.J. (2002). The physical environment and major vegetation types of Sekhukhuneland, South Africa. South African Journal of Botany, 68, 127–142. https://doi.org/10.1016/S0254-6299(15)30412-9 Small, R.J.O., De Szoeke, S.P., &Xie, S.P. (2007). The Central American Midsummer Drought: Regional Aspects and Large-Scale Forcing. Journal of Climate, 20(19), 4853-4873. https://doi.org/10.1175/JCLI4261.1 Smith, S., Balkwill, K., & Williamson, S. (2001). Compositae on serpentine in the Barberton Greenstone Belt, South Africa. South African Journal of Science, 97, 518–520. Southworth, D., Tackaberry, L.E., & Massicotte, H.B. (2014). Mycorrhizal ecology on serpentine soils. Plant Ecology & Diversity, 7, 445–455. https://doi.org/10.1080/17550874.2013.848950 Stalmans, M., Robinson, E.R., & Balkwill, K. (1999). Ordination and classification of vegetation of Songimvelo Game Reserve in the Barberton Mountainland, South Africa for the assessment of wildlife habitat distribution and quality. Bothalia, 29, 305–325. https://doi.org/10.4102/abc.v29i2.603 Stefanowicz, A.M., Kapusta, P., Szarek-Łukaszewska, G., Grodzińska, K., Niklińska, M., & Vogt, R.D. (2012). Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Science of the Total Environment, 439, 211–219. https://doi.org/10.1016/j.scitotenv.2012.09.030 Sugden, A.M. (1986). The montane vegetation and flora of Margarita islands, Venezuela. Journal of the Arnold Arboretum, 67, 233-255. https://doi.org/10.5962/p.185936 Taylor, G.C. (1960) Geología de la Isla de Margarita, Venezuela. Boletin de Geologia, Publ. Especial, 3, 838—893. Ter Steege, H., Jansen-Jacobs, M.J., &Datadin, V. (2000). Can botanical collections assist in a National Protected Area Stra.tegy in Guyana? Biodiversity and Conservation, 9, 215-240. https://doi.org/10.1023/A:1008990107253 Toledo, S., García-Beltrán, J.A., Lemus, H., & García-Beltrán, D. (2019). Estructura poblacional y autoecología de Heptanthus ranunculoides (Asteraceae) en Sierra de Cajálbana, Pinar del Río, Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 40, 9-18. Trethowan, L.A., Blonder, B., Kintamani, E., Girmansyah, D., Utteridge, T.M., & Brearley, F.Q. (2021). Metal‐rich soils increase tropical tree stoichiometric distinctiveness. Plant and Soil, 461, 579–589. https://doi.org/10.1007/s11104-021-04839-7 Upie-Maga, & Maga-Bid. (2001). Mapa Fisiografico-Geomorfologico de la Republica de Guatemala, a escala 1:250,000. Memoria Tecnica-. Ministerio de Agricultura, Ganadería y Alimentación y Programa de Emergencia por Desastres Naturales, Ciudad de Guatemala, Guatemala. Urbani Patat, F. (2018) Una revisión de los terrenos geológicos del sistema montañoso del Caribe, norte de Venezuela. Boletín de Geología, 23, 118-216 van der Ent, A., Baker, A.J.M., van Balgooy, M.M.J., &Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia: mining, plant diversity, conservation and nickel phytomining. Journal of Geochemical Exploration, 128, 72–79. https://doi.org/10.1016/j.gexplo.2013.01.009 van der Ent, A., & Mulligan, D. (2015). Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. Journal of Chemical Ecology, 41, 396–408. van der Ent, A., Wong, K.M., Sugau, J., & Repin, R. (2015a). Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Australian Journal of Botany, 63, 204–215. https://doi.org/10.1071/BT14214 van der Ent, A., Erskine, P.D., & Sumail, S. (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology, 25, 243–259. https://doi.org/10.1007/s00049-015-0192-7 van der Ent, A., Erskine, P.D., Mulligan, D.R., Repin, R., & Karim, R. (2016). Vegetation on ultramafic edaphic islands in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and altitude. Plant and Soil, 403, 77–101. van der Ent, A., Ocenar, A., Tisserand, R., Sugau, J.B., Erskine, P.D., & Echevarria, G. (2019) Herbarium X-ray Fluorescence Screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 202, 49–58. https://doi.org/10.1016/j.gexplo.2019.03.013 van der Ent, A., Vinya, R., Erskine, P.D., Malaisse, F., Przybyłowicz, W.J., Barnabas, A.D., Harris, H.H., & Mesjasz-Przybyłowicz, J. (2020). Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper-cobalt belt in Northern Zambia. Metallomics, 12, 682–701. https://doi.org/10.1039/c9mt00263d Van Wyk, A.E., & Smith, G. F. (2001). Regions of floristic endemism in southern Africa: a review with emphasis on succulents. Umdaus, Pretoria. Vargas Cuervo, G.N., & Rodríguez Rodríguez, C.A. (2008). Metodología para la prospección de níquel utilizando técnicas de sensores remotos. Boletín de Ciencias de la Tierra, 25,43-66. Vega-Nieva, D.J., Nava-Miranda, M.G., Calleros-Flores, E., López-Serrano, P.M., Briseño-Reyes, J., López-Sánchez, C., Corral-Rivas, J. J., Montiel-Antuna, E., Cruz-Lopez, M.I., Ressl, R., Cuahtle, M., Alvarado-Celestino, E., González-Cabán, A., Cortes-Montaño, C., Pérez-Salicrup, D., Jardel-Pelaez, E., Jiménez, E., Arellano-Pérez, S., Álvarez-González, J.G., & Ruiz-González, A.D. (2019).Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014. Fire Ecology, 15, 28. https://doi.org/10.1186/s42408-019-0042-z Veliz, M.E. (2008). Diversidad Florística d Guatemala. In C. N. D. A. Protegidas-Conap (Eds.). Guatemala y su Biodiversidad: Un Enfoque Histórico, Cultural, Biológico y Económico. Consejo Nacional de Áreas Protegidas-CONAP, Ciudad de Guatemala, Guatemala. Veloz, A., Mejia, M., Monegro, A.L., & García, R. (2011). Flora y vegetación serpentinícola de la Reserva Biológica Sierra Prieta, Santo Domingo Norte, Republica Dominicana. Moscosoa, 17, 58–89. Venter, A., Siebert, S.J., Rajakaruna, N., Barnard, S., Levanets, A., Ismail, A., Allam, M., Peterson, B., & Sanko, T. (2018). Biological crusts of serpentine and non–serpentine soils from the Barberton Greenstone Belt of South Africa. Ecological Research, 33, 629–640. https://doi.org/10.1007/s11284-017-1546-0 Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. The New Phytologist, 181, 759–776. https://doi.org/10.1111/j.1469-8137.2008.02748.x Vilela, E.F., Guilherme, L.R.G., Silva, C.A. & Zinn, Y.L., (2020). Trace elements in soils developed from metamorphic ultrabasic rocks in Minas Gerais, Brazil. Geoderma Regional, 21, p.e00279. Vilela, E.F., Inda, A.V., & Zinn, Y.L. (2019). Soil genesis, mineralogy and chemical composition in a steatite outcrop under tropical humid climate in Brazil. Catena, 183, 104234. https://doi.org/10.1016/j.catena.2019.104234 Villegas, V.H. (2000). Anomalías geobotánicas espectrales asociadas con los cambios en litología: Su uso para la cartografía geológica de las rocas ultrabásicas en terrenos totalmente vegetados de la costa Pacífica Colombiana. Boletín de Geología. Bucaramanga (Colombia), 22, 34-53. Visioli, G., Sanangelantoni, A.M., Conti, F.D., Bonati, B., Gardi, C., Menta, C. (2018). Above and belowground biodiversity in adjacent and distinct serpentine soils. Applied Soil Ecology, 133, 98–103. Vithanage, M., Rajapaksha, A.U., Oze, C., Rajakaruna, N., & Dissanayake, C.B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 186, 3415–3429. https://doi.org/10.1007/s10661-014-3626-8 Von Wettberg, E.J., Ray-Mukherjee, J., D’Adesky, N., Nesbeth, D., & Sistla, S. (2014). The evolutionary ecology and genetics of stress resistance syndrome (SRS) traits: Revisiting Chapin, Autumn and Pugnaire (1993). In N. Rajakaruna, R. S. Boyd, T. Harris, (Eds.), Plant ecology and evolution in harsh environments. (pp. 259–266). Nova Science Publishers. Walker, R.B. (1954). The ecology of serpentine soils: II. Factors affecting plant growth on serpentine soils. Ecology, 35, 259–266. Webb, C.O. (2005). Vegetation of the Raja Ampat Islands, Papua, Indonesia. A report to the Nature Conservancy. 33 pp. Weerasinghe, H.A.S., & Iqbal, M.C.M. (2011). Plant diversity and soil characteristics of the Ussangoda serpentine site. Journal National Science Foundation Sri Lanka, 39, 355–363. https://doi.org/10.4038/jnsfsr.v39i4.3884 Werger, M.J.A., Wild, H., & Drummond, B.R. (1978). Vegetation structure and substrate of the northern part of the Great Dyke, Rhodesia: Environment and plant communities. Vegetatio, 37, 79–89. https://doi.org/10.1007/BF00126831 Whittaker, R. H. (1954). The ecology of serpentine soils. Ecology, 35, 258–288. https://doi.org/10.2307/1931126 White, F. (1978) The Afromontane Region.) Biogeography and ecology of Southern Africa. Monographiae Biologicae, 31, 463–513. https://doi.org/10.1007/978-94-009-9951-0_11 Wild, H. (1965). The flora of the Great Dyke of Southern Rhodesia with special reference to the serpentine soils. Kirkia, 5, 49–86. Wild, H. (1968). Geobotanical anomalies in Rhodesia: 1—the vegetation of copper bearing soils. Kirkia, 7, 1–71. Williamson, S.D., & Balkwill, K. (2015). Plant census and floristic analysis of selected serpentine outcrops of the Barberton Greenstone Belt, Mpumalanga, South Africa. South African Journal of Botany, 97, 133–142. https://doi.org/10.1016/j.sajb.2014.12.004 Witkowski, E.T.F., Dahlmann, L.A., & Boycott, R.C. (2001). Conservation biology of Kniphofia umbrina, a critically endangered Swaziland serpentine endemic. South African Journal of Science, 97, 609–616.