Glioma Formation, Cancer Stem Cells, and Akt Signaling

Springer Science and Business Media LLC - Tập 4 Số 3 - Trang 203-210 - 2008
Dolores Hambardzumyan1, Massimo Squatrito1, Eletha Carbajal1, Eric C. Holland2
1Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
2Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., & Steindler, D. A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 39(3), 193–206.

Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., & Dirks, P. B. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64(19), 7011–7021.

Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.

Levitt, P., & Rakic, P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. Journal Comparative Neurology, 193(3), 815–840.

Voigt, T. (1989). Development of glial cells in the cerebral wall of ferrets: Direct tracing of their transformation from radial glia into astrocytes. Journal Comparative Neurology, 289(1), 74–88.

Hunter, K. E., & Hatten, M. E. (1995). Radial glial cell transformation to astrocytes is bidirectional: Regulation by a diffusible factor in embryonic forebrain. Proceedings of the National Academy of Sciences of the United States America, 92(6), 2061–2065.

Ghashghaei, H. T., Weimer, J. M., Schmid, R. S., Yokota, Y., McCarthy, K. D., Popko, B., & Anton, E. S. (2007). Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes and Development, 21(24), 3258–3271.

Grinspan, J. B., Stern, J. L., Franceschini, B., & Pleasure, D. (1993). Trophic effects of basic fibroblast growth factor (bFGF) on differentiated oligodendroglia: A mechanism for regeneration of the oligodendroglial lineage. Journal of Neuroscience Research, 36(6), 672–680.

Grinspan, J. B., Reeves, M. F., Coulaloglou, M. J., Nathanson, D., & Pleasure, D. (1996). Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival. Journal of Neuroscience Research, 46(4), 456–464.

Pouly, S., Matthieu, J. M., & Honegger, P. (1994). Mature oligodendrocytes in three-dimensional brain cell culture respond to protein kinase C stimulation by dedifferentiation, proliferation and remyelination. Schweizer Archiv fur Neurologie und Psychiatrie, 145(3), 27–29.

Sanai, N., Alvarez-Buylla, A., & Berger, M. S. (2005). Neural stem cells and the origin of gliomas. New England Journal for Medicine, 353(8), 811–822.

Holland, E. C., Li, Y., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. A., & Fuller, G. N. (2000). Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. American Journal of Pathology, 157(3), 1031–1037.

Dai, C., Celestino, J. C., Okada, Y., Louis, D. N., Fuller, G. N., & Holland, E. C. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes and Development, 15(15), 1913–1925.

Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25(1), 55–57.

Uhrbom, L., Dai, C., Celestino, J. C., Rosenblum, M. K., Fuller, G. N., & Holland, E. C. (2002). Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Research, 62(19), 5551–5558.

Lassman, A. B., Dai, C., Fuller, G. N., Vickers, A. J., & Holland, E. C. (2004). Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biology, 1(2), 157–163.

Rich, J. N., Hans, C., Jones, B., Iversen, E. S., McLendon, R. E., Rasheed, B. K., et al. (2005). Gene expression profiling and genetic markers in glioblastoma survival. Cancer Research, 65(10), 4051–4058.

Engelhard 3rd, H. H., Butler, A. Bt., & Bauer, K. D. (1989). Quantification of the c-myc oncoprotein in human glioblastoma cells and tumor tissue. Journal of Neurosurgery, 71(2), 224–232.

Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicine, 3(7), 730–737.

Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States America, 100(7), 3983–3988.

Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., Wicha, M., Clarke, M. F., & Simeone, D. M. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.

Maitland, N. J., Bryce, S. D., Stower, M. J., & Collins, A. T. (2006). Prostate cancer stem cells: A target for new therapies. Ernst Schering Foundation Symposium Proceedings, 5, 155–179.

Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Weissman, I. L., Clarke, M. F., & Ailles, L. E. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States America, 104(3), 973–978.

O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., Lawton, M. T., McDermott, M. W., Parsa, A. T., Manuel-Garcia Verdugo, J., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427(6976), 740–744.

Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Natural Medicine, 4(11), 1313–1317.

Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann 2nd, G., Jiang, L., Kang, J., Nedergaard, M., & Goldman, S. A. (2003). Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Natural Medicine, 9(4), 439–447.

de la Monte, S. M. (1989). Uniform lineage of oligodendrogliomas. American Journal of Pathology, 135(3), 529–540.

Taylor, M. D., Poppleton, H., Fuller, C., Su, X., Liu, Y., Jensen, P., Magdaleno, S., Dalton, J., Calabrese, C., Board, J., et al. (2005). Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 8(4), 323–335.

Sharma, M. K., Mansur, D. B., Reifenberger, G., Perry, A., Leonard, J. R., Aldape, K. D., et al. (2007). Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Research, 67(3), 890–900.

Gilbertson, R. J., & Gutmann, D. H. (2007). Tumorigenesis in the brain: Location, location, location. Cancer Research, 67(12), 5579–5582.

Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.

Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., et al. (1997). A novel five-transmembrane hematopoietic stem cell antigen: Isolation, characterization, and molecular cloning. Blood, 90(12), 5013–5021.

Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States America, 97(26), 14720–14725.

Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P. J., et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Research, 67(9), 4010–4015.

Wang, J., Sakariassen, P. O., Tsinkalovsky, O., Immervoll, H., Boe, S. O., Svendsen, A., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 122(4), 761–768.

Zheng, X., Shen, G., Yang, X., & Liu, W. (2007). Most C6 cells are cancer stem cells: Evidence from clonal and population analyses. Cancer Research, 67(8), 3691–3697.

Ogden, A. T., Waziri, A. E., Lochhead, R. A., Fusco, D., Lopez, K., Ellis, J. A., et al. (2008). Identification of A2B5+CD133− tumor-initiating cells in adult human gliomas. Neurosurgery, 62(2), 505–514 discussion 505–514.

Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., & Strasser, A. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.

Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.

Hambardzumyan, D., Squatrito, M., & Holland, E. C. (2006). Radiation resistance and stem-like cells in brain tumors. Cancer Cell, 10(6), 454–456.

Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444(7120), 761–765.

Aguado, T., Carracedo, A., Julien, B., Velasco, G., Milman, G., Mechoulam, R., et al. (2007). Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. Journal Biological Chemistry, 282(9), 6854–6862.

Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Review Cancer, 5(4), 275–284.

Liu, G., Yuan, X., Zeng, Z., Tunici, P., Ng, H., Abdulkadir, I. R., et al. (2006). Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma. Molecular Cancer, 5, 67.

Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11(1), 69–82.

Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nature Review Cancer, 7(10), 733–736.

Jordan, J. D., Ma, D. K., Ming, G. L., & Song, H. (2007). Cellular niches for endogenous neural stem cells in the adult brain. CNS & Neurological Disorders Drug Targets, 6(5), 336–341.

Hambardzumyan, D., Becher, O. J., Rosenblum, M. K., Pandolfi, P. P., Manova-Todorova, K., & Holland, E. C. (2008). PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes and Development, 22(4), 436–448.

Fomchenko, E. I., & Holland, E. C. (2007). Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurgery Clinics of North America, 18(1), 39–58 viii.

Becher, O. J., Hambardzumyan, D., Fomchenko, E. I., Momota, H., Mainwaring, L., Bleau, A. M., et al. (2008). Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. Cancer Research, 68, 2241–2249.

Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W., & Guan, X. Y. (2008). CD133(+) HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27, 1749–1758.

Cohen, M. H., Johnson, J. R., & Pazdur, R. (2005). Food and Drug Administration Drug approval summary: Temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clinical Cancer Research, 11(19 Pt 1), 6767–6771.

Groszer, M., Erickson, R., Scripture-Adams, D. D., Dougherty, J. D., Le Belle, J., Zack, J. A., et al. (2006). PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proceedings of the National Academy of Sciences of the United States America, 103(1), 111–116.

Gil-Perotin, S., Marin-Husstege, M., Li, J., Soriano-Navarro, M., Zindy, F., Roussel, M. F., et al. (2006). Loss of p53 induces changes in the behavior of subventricular zone cells: Implication for the genesis of glial tumors. Journal of Neuroscience, 26(4), 1107–1116.

Meletis, K., Wirta, V., Hede, S. M., Nister, M., Lundeberg, J., & Frisen, J. (2006). p53 suppresses the self-renewal of adult neural stem cells. Development, 133(2), 363–369.

Hartmann, W., Digon-Sontgerath, B., Koch, A., Waha, A., Endl, E., Dani, I., et al. (2006). Phosphatidylinositol 3′-kinase/AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN. Clinical Cancer Research, 12(10), 3019–3027.

Rao, G., Pedone, C. A., Del Valle, L., Reiss, K., Holland, E. C., & Fults, D. W. (2004). Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene, 23(36), 6156–6162.

Lopiccolo, J., Blumenthal, G. M., Bernstein, W. B., & Dennis, P. A. (2008). Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations. Drug Resistance Updates, 11, 32–50.

Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2), 231–241.

Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., et al. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science, 282(5392), 1318–1321.

Mayo, L. D., & Donner, D. B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proceedings of the National Academy of Sciences of the United States America, 98(20), 11598–11603.

Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96(6), 857–868.

Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378(6559), 785–789.

Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 9(3), 157–173.

Rajasekhar, V. K., Viale, A., Socci, N. D., Wiedmann, M., Hu, X., & Holland, E. C. (2003). Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Molecular Cell, 12(4), 889–901.

Hu, X., Pandolfi, P. P., Li, Y., Koutcher, J. A., Rosenblum, M., & Holland, E. C. (2005). mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia, 7(4), 356–368.

Strojnik, T., Rosland V, G., Sakariassen, P. O., Kavalar, R., & Lah, T. (2007). Neural stem cell markers, nestin and Musashi proteins, in the progression of human glioma: Correlation of nestin with prognosis of patient survival. Surgical Neurology, 68(2), 133–143 discussion 134–143.

Zeppernick, F., Ahmadi, R., Campos, B., Dictus, C., Helmke, B. M., Becker, N., et al. (2008). Stem cell marker CD133 affects clinical outcome in glioma patients. Clinical Cancer Research, 14(1), 123–129.

Beier, D., Wischhusen, J., Dietmaier, W., Hau, P., Proescholdt, M., Brawanski, A., et al. (2008). CD133 Expression and cancer stem cells predict prognosis in high-grade oligodendroglial tumors. Brain Pathology, 18(3), 370–377.

Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., et al. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells. Journal of Comparative Neurology, 494(3), 415–434.

Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.

Yilmaz, O. H., Morrison, S. J. (2008). The PI-3kinase pathway in hematopoietic stem cells and leukemia-initiating cells: A mechanistic difference between normal and cancer stem cells. Blood Cells, Molecules & Diseases, 41(1), 73–76.