Glaucoma
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bourne, 2013, Causes of vision loss worldwide, 1990–2010: a systematic analysis, Lancet Glob Health, 1, e339, 10.1016/S2214-109X(13)70113-X
Stevens, 2013, Global prevalence of visual impairment and blindness: magnitude and temporal trends, 1990–2010, Ophthalmology, 120, 2377, 10.1016/j.ophtha.2013.05.025
Tham, 2014, Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis, Ophthalmology, 121, 2081, 10.1016/j.ophtha.2014.05.013
Bourne, 2016, Number of people blind or visually impaired by glaucoma worldwide and in world regions: a meta-analysis, PLoS One, 11, e0162229, 10.1371/journal.pone.0162229
Ritch, 1994, Exfoliation syndrome: the most common identifiable cause of open-angle glaucoma, J Glaucoma, 3, 176, 10.1097/00061198-199400320-00018
Moroi, 2003, Long anterior zonules and pigment dispersion, Am J Ophthalmol, 136, 1176, 10.1016/S0002-9394(03)00657-3
Drance, 2001, Risk factors for progression of visual field abnormalities in normal-tension glaucoma, Am J Ophthalmol, 131, 699, 10.1016/S0002-9394(01)00964-3
Anderson, 2003, Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma, Am J Ophthalmol, 136, 820, 10.1016/S0002-9394(03)00478-1
Congdon, 1997, Biometry and primary angle-closure glaucoma among Chinese, white, and black populations, Ophthalmology, 104, 1489, 10.1016/S0161-6420(97)30112-2
Dandona, 2000, Angle-closure glaucoma in an urban population in southern India: the Andhra Pradesh eye disease study, Ophthalmology, 107, 1710, 10.1016/S0161-6420(00)00274-8
Nongpiur, 2011, Lens vault, thickness, and position in Chinese subjects with angle closure, Ophthalmology, 118, 474, 10.1016/j.ophtha.2010.07.025
Aiello, 1994, Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders, N Engl J Med, 331, 1480, 10.1056/NEJM199412013312203
Quigley, 1992, An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage, Ophthalmology, 99, 19, 10.1016/S0161-6420(92)32018-4
Schuman, 1995, Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography, Arch Ophthalmol, 113, 586, 10.1001/archopht.1995.01100050054031
Zangwill, 2001, Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph, Arch Ophthalmol, 119, 985, 10.1001/archopht.119.7.985
Jonas, 1988, Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes, Invest Ophthalmol Vis Sci, 29, 1151
Varma, 1994, Race-, age-, gender-, and refractive error-related differences in the normal optic disc, Arch Ophthalmol, 112, 1068, 10.1001/archopht.1994.01090200074026
Quigley, 1981, Optic nerve damage in human glaucoma, II: the site of injury and susceptibility to damage, Arch Ophthalmol, 99, 635, 10.1001/archopht.1981.03930010635009
Lockwood, 2015, Lamina cribrosa microarchitecture in normal monkey eyes, part 1: methods and initial results, Invest Ophthalmol Vis Sci, 56, 1618, 10.1167/iovs.14-15967
Morgan, 2008, The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc, J Glaucoma, 17, 408, 10.1097/IJG.0b013e31815c5f7c
Ren, 2010, Cerebrospinal fluid pressure in glaucoma. A prospective study, Ophthalmology, 117, 259, 10.1016/j.ophtha.2009.06.058
Burgoyne, 2005, The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage, Prog Retin Eye Res, 24, 39, 10.1016/j.preteyeres.2004.06.001
Sigal, 2011, IOP-induced lamina cribrosa deformation and scleral canal expansion: independent or related?, Invest Ophthalmol Vis Sci, 52, 9023, 10.1167/iovs.11-8183
Yang, 2015, The connective tissue components of optic nerve head cupping in monkey experimental glaucoma, part 1: global change, Invest Ophthalmol Vis Sci, 56, 7661, 10.1167/iovs.15-17624
Quigley, 2000, Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats, Invest Ophthalmol Vis Sci, 41, 3460
Abbott, 2014, Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats, Invest Ophthalmol Vis Sci, 55, 674, 10.1167/iovs.13-12811
Tielsch, 1995, Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment, Arch Ophthalmol, 113, 216, 10.1001/archopht.1995.01100020100038
Zheng, 2010, Distribution of ocular perfusion pressure and its relationship with open-angle glaucoma: the Singapore Malay Eye Study, Invest Ophthalmol Vis Sci, 51, 3399, 10.1167/iovs.09-4867
Hayreh, 1994, Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders, Am J Ophthalmol, 117, 603, 10.1016/S0002-9394(14)70067-4
Charlson, 2014, Nocturnal systemic hypotension increases the risk of glaucoma progression, Ophthalmology, 121, 2004, 10.1016/j.ophtha.2014.04.016
Khawaja, 2013, The role of ocular perfusion pressure in glaucoma cannot be studied with multivariable regression analysis applied to surrogates, Invest Ophthalmol Vis Sci, 54, 4619, 10.1167/iovs.13-12487
Osborne, 2014, The effect of visual blue light on mitochondrial function associated with retinal ganglions cells, Exp Eye Res, 128, 8, 10.1016/j.exer.2014.08.012
Sanchez, 2016, Emerging mitochondrial therapeutic targets in optic neuropathies, Pharmacol Ther, 165, 132, 10.1016/j.pharmthera.2016.06.004
Khor, 2016, Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma, Nat Genet, 48, 556, 10.1038/ng.3540
Bailey, 2016, Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma, Nat Genet, 48, 189, 10.1038/ng.3482
Yucel, 2000, Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma, Arch Ophthalmol, 118, 378, 10.1001/archopht.118.3.378
Crawford, 2001, Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex, Invest Ophthalmol Vis Sci, 42, 358
Sample, 2000, Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma, Invest Ophthalmol Vis Sci, 41, 1783
Pena, 2001, Increased elastin expression in astrocytes of the lamina cribrosa in response to elevated intraocular pressure, Invest Ophthalmol Vis Sci, 42, 2303
Wang, 2002, Immunohistologic evidence for retinal glial cell changes in human glaucoma, Invest Ophthalmol Vis Sci, 43, 1088
Rojas, 2014, Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers, J Neuroinflammation, 11, 133, 10.1186/1742-2094-11-133
Heijl, 2009, Natural history of open-angle glaucoma, Ophthalmology, 116, 2271, 10.1016/j.ophtha.2009.06.042
Rudnicka, 2006, Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis, Invest Ophthalmol Vis Sci, 47, 4254, 10.1167/iovs.06-0299
Kim, 2012, Risk factors for primary open-angle glaucoma in South Korea: the Namil study, Jpn J Ophthalmol, 56, 324, 10.1007/s10384-012-0153-4
Kim, 2016, Prevalence, awareness, and risk factors of primary open-angle glaucoma: Korea National Health and Nutrition Examination Survey 2008–2011, Ophthalmology, 123, 532, 10.1016/j.ophtha.2015.11.004
2000, The Advanced Glaucoma Intervention Study (AGIS), 7: the relationship between control of intraocular pressure and visual field deterioration, Am J Ophthalmol, 130, 429, 10.1016/S0002-9394(00)00538-9
Musch, 2009, Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors, Ophthalmology, 116, 200, 10.1016/j.ophtha.2008.08.051
Kass, 2002, The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma, Arch Ophthalmol, 120, 701, 10.1001/archopht.120.6.701
Leske, 2007, Predictors of long-term progression in the early manifest glaucoma trial, Ophthalmology, 114, 1965, 10.1016/j.ophtha.2007.03.016
Garway-Heath, 2015, Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial, Lancet, 385, 1295, 10.1016/S0140-6736(14)62111-5
Leske, 2007, Nine-year incidence of open-angle glaucoma in the Barbados Eye Studies, Ophthalmology, 114, 1058, 10.1016/j.ophtha.2006.08.051
Xu, 2007, High myopia and glaucoma susceptibility the Beijing Eye Study, Ophthalmology, 114, 216, 10.1016/j.ophtha.2006.06.050
Qiu, 2013, Association between myopia and glaucoma in the United States population, Invest Ophthalmol Vis Sci, 54, 830, 10.1167/iovs.12-11158
Perera, 2010, Refractive error, axial dimensions and primary open angle glaucoma: The Singapore Malay Eye Study, Arch Ophthalmol, 128, 900, 10.1001/archophthalmol.2010.125
Nagaoka, 2015, Glaucomatous-type optic discs in high myopia, PLoS One, 10, e0138825, 10.1371/journal.pone.0138825
Wang, 2016, Finite element analysis predicts large optic nerve head strains during horizontal eye movements, Invest Ophthalmol Vis Sci, 57, 2452, 10.1167/iovs.15-18986
Zhang, 2013, Socioeconomic disparity in use of eye care services among US adults with age-related eye diseases: National Health Interview Survey, 2002 and 2008, JAMA Ophthalmol, 131, 1198, 10.1001/jamaophthalmol.2013.4694
Topouzis, 2008, Factors associated with undiagnosed open-angle glaucoma: the Thessaloniki Eye Study, Am J Ophthalmol, 145, 327, 10.1016/j.ajo.2007.09.013
Zhao, 2015, Diabetes, fasting glucose, and the risk of glaucoma: a meta-analysis, Ophthalmology, 122, 72, 10.1016/j.ophtha.2014.07.051
Zhou, 2014, Diabetes mellitus as a risk factor for open-angle glaucoma: a systematic review and meta-analysis, PLoS One, 9, e102972, 10.1371/journal.pone.0102972
Bae, 2014, Systemic hypertension as a risk factor for open-angle glaucoma: a meta-analysis of population-based studies, PLoS One, 9, e108226, 10.1371/journal.pone.0108226
Zhao, 2014, The association of blood pressure and primary open-angle glaucoma: a meta-analysis, Am J Ophthalmol, 158, 615, 10.1016/j.ajo.2014.05.029
Kang, 2015, Comparison of risk factor profiles for primary open-angle glaucoma subtypes defined by pattern of visual field loss: a prospective study, Invest Ophthalmol Vis Sci, 56, 2439, 10.1167/iovs.14-16088
Zhao, 2016, Obstructive sleep apnea and retinal nerve fiber layer thickness: a meta-analysis, J Glaucoma, 25, e413, 10.1097/IJG.0000000000000349
Wang, 2016, Oral contraceptive use and prevalence of self-reported glaucoma or ocular hypertension in the United States, Ophthalmology, 123, 729, 10.1016/j.ophtha.2015.11.029
Morgan, 1995, The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient, Invest Ophthalmol Vis Sci, 36, 1163
Berdahl, 2008, Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study, Invest Ophthalmol Vis Sci, 49, 5412, 10.1167/iovs.08-2228
Topouzis, 2013, Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study, Am J Ophthalmol, 155, 843, 10.1016/j.ajo.2012.12.007
Gordon, 2002, The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma, Arch Ophthalmol, 120, 714, 10.1001/archopht.120.6.714
Jonas, 2005, Central corneal thickness and thickness of the lamina cribrosa in human eyes, Invest Ophthalmol Vis Sci, 46, 1275, 10.1167/iovs.04-0851
Nongpiur, 2015, Lack of association between corneal hysteresis and corneal resistance factor with glaucoma severity in primary angle closure glaucoma, Invest Ophthalmol Vis Sci, 56, 6879, 10.1167/iovs.15-17930
Day, 2011, Central corneal thickness and glaucoma in East Asian people, Invest Ophthalmol Vis Sci, 52, 8407, 10.1167/iovs.11-7927
Foo, 2012, Determinants of angle width in Chinese Singaporeans, Ophthalmology, 119, 278, 10.1016/j.ophtha.2011.07.049
Moghimi, 2015, Comparison of anterior segment-optical coherence tomography parameters in phacomorphic angle closure and acute angle closure eyes, Invest Ophthalmol Vis Sci, 56, 7611, 10.1167/iovs.15-17336
Alward, 1998, Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A), N Engl J Med, 338, 1022, 10.1056/NEJM199804093381503
Fingert, 1999, Analysis of myocilin mutations in 1703 glaucoma patients from five different populations, Hum Mol Genet, 8, 899, 10.1093/hmg/8.5.899
Rezaie, 2002, Adult-onset primary open-angle glaucoma caused by mutations in optineurin, Science, 295, 1077, 10.1126/science.1066901
Monemi, 2005, Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1, Hum Mol Genet, 14, 725, 10.1093/hmg/ddi068
Thorleifsson, 2007, Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma, Science, 317, 1397, 10.1126/science.1146554
Thorleifsson, 2010, Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma, Nat Genet, 42, 906, 10.1038/ng.661
Burdon, 2011, Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1, Nat Genet, 43, 574, 10.1038/ng.824
van Koolwijk, 2012, Common genetic determinants of intraocular pressure and primary open-angle glaucoma, PLoS Genet, 8, e1002611, 10.1371/journal.pgen.1002611
Wiggs, 2012, Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma, PLoS Genet, 8, e1002654, 10.1371/journal.pgen.1002654
Gharahkhani, 2014, Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma, Nat Genet, 46, 1120, 10.1038/ng.3079
Chen, 2014, Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma, Nat Genet, 46, 1115, 10.1038/ng.3078
Hysi, 2014, Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma, Nat Genet, 46, 1126, 10.1038/ng.3087
Trikha, 2015, A genetic variant in TGFBR3-CDC7 is associated with visual field progression in primary open-angle glaucoma patients from Singapore, Ophthalmology, 122, 2416, 10.1016/j.ophtha.2015.08.016
Li, 2015, A common variant near TGFBR3 is associated with primary open angle glaucoma, Hum Mol Genet, 24, 3880, 10.1093/hmg/ddv128
Stoilov, 1997, Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21, Hum Mol Genet, 6, 641, 10.1093/hmg/6.4.641
Aung, 2015, A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome, Nat Genet, 47, 387, 10.1038/ng.3226
Aung, 2017, Worldwide genetic association study of exfoliation syndrome and glaucoma identifies common genetic variants at five new loci and highly protective rare mutations at LOXL1, Nat Genet, 10.1038/ng.3875
Springelkamp, 2014, Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process, Nat Commun, 5, 4883, 10.1038/ncomms5883
Springelkamp, 2015, Meta-analysis of genome-wide association studies identifies novel loci associated with optic disc morphology, Genet Epidemiol, 39, 207, 10.1002/gepi.21886
Tham, 2015, Aggregate effects of intraocular pressure and cup-to-disc ratio genetic variants on glaucoma in a multiethnic Asian population, Ophthalmology, 122, 1149, 10.1016/j.ophtha.2015.01.024
Springelkamp, 2017, New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics, Hum Mol Gen, 26, 438
Nongpiur, 2014, ABCC5, a gene that influences the anterior chamber depth, is associated with primary angle closure glaucoma, PLoS Genet, 10, e1004089, 10.1371/journal.pgen.1004089
Vithana, 2012, Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma, Nat Genet, 44, 1142, 10.1038/ng.2390
Shaikh, 2014, Burden of undetected and untreated glaucoma in the United States, Am J Ophthalmol, 158, 1121, 10.1016/j.ajo.2014.08.023
Burr, 2007, The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation, Health Technol Assess, 11, 1, 10.3310/hta11410
Xu, 2008, Single intraocular pressure measurement for glaucoma detection: The Beijing Eye Study, Acta Ophthalmol, 86, 229, 10.1111/j.1600-0420.2007.01026.x
Chauhan, 2013, Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter, Ophthalmology, 120, 535, 10.1016/j.ophtha.2012.09.055
Loewen, 2015, Combining measurements from three anatomical areas for glaucoma diagnosis using Fourier-domain optical coherence tomography, Br J Ophthalmol, 99, 1224, 10.1136/bjophthalmol-2014-305907
Skaat, 2016, African Descent and Glaucoma Evaluation Study (ADAGES): racial differences in optic disc hemorrhage and beta-zone parapapillary atrophy, Ophthalmology, 123, 1476, 10.1016/j.ophtha.2016.03.025
Zhang, 2016, Predicting development of glaucomatous visual field conversion using baseline fourier-domain optical coherence tomography, Am J Ophthalmol, 163, 29, 10.1016/j.ajo.2015.11.029
Yu, 2016, Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study, Ophthalmology, 123, 1201, 10.1016/j.ophtha.2016.02.017
Jonas, 2000, Diagnosis and pathogenesis of glaucomatous optic neuropathy: morphological aspects, Prog Retin Eye Res, 19, 1, 10.1016/S1350-9462(99)00002-6
Jonas, 1991, Parapapillary atrophy and retinal vessel diameter in nonglaucomatous optic nerve damage, Invest Ophthalmol Vis Sci, 32, 2942
Lee, 2010, Cross-sectional anatomic configurations of peripapillary atrophy evaluated with spectral domain-optical coherence tomography, Invest Ophthalmol Vis Sci, 51, 666, 10.1167/iovs.09-3663
Belghith, 2016, Structural change can be detected in advanced-glaucoma eyes, Invest Ophthalmol Vis Sci, 57, 511, 10.1167/iovs.15-18929
Iwase, 2004, The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study, Ophthalmology, 111, 1641
Kerrigan-Baumrind, 2000, Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons, Invest Ophthalmol Vis Sci, 41, 741
Akagi, 2016, Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study, Am J Ophthalmol, 168, 237, 10.1016/j.ajo.2016.06.009
Heijl, 2002, Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial, Arch Ophthalmol, 120, 1268, 10.1001/archopht.120.10.1268
Tanihara, 2015, Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials, JAMA Ophthalmol, 133, 755, 10.1001/jamaophthalmol.2015.0525
Bacharach, 2015, Double-masked, randomized, dose-response study of AR-13324 versus latanoprost in patients with elevated intraocular pressure, Ophthalmology, 122, 302, 10.1016/j.ophtha.2014.08.022
Tanihara, 2016, One-year clinical evaluation of 0·4% ripasudil (K-115) in patients with open-angle glaucoma and ocular hypertension, Acta Ophthalmol, 94, e26, 10.1111/aos.12829
Gedde, 2012, Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up, Am J Ophthalmol, 153, 789e2
Rulli, 2013, Efficacy and safety of trabeculectomy vs nonpenetrating surgical procedures: a systematic review and meta-analysis, JAMA Ophthalmol, 131, 1573, 10.1001/jamaophthalmol.2013.5059
Ayyala, 2011, Comparison of surgical outcomes between canaloplasty and trabeculectomy at 12 months' follow-up, Ophthalmology, 118, 2427, 10.1016/j.ophtha.2011.05.021
Lam, 2002, Argon laser peripheral iridoplasty versus conventional systemic medical therapy in treatment of acute primary angle-closure glaucoma: a prospective, randomized, controlled trial, Ophthalmology, 109, 1591, 10.1016/S0161-6420(02)01158-2
Azuara-Blanco, 2016, Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial, Lancet, 388, 1389, 10.1016/S0140-6736(16)30956-4
Teekhasaenee, 1999, Combined phacoemulsification and goniosynechialysis for uncontrolled chronic angle-closure glaucoma after acute angle-closure glaucoma, Ophthalmology, 106, 669, 10.1016/S0161-6420(99)90149-5
Holden, 2016, Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050, Ophthalmology, 123, 1036, 10.1016/j.ophtha.2016.01.006
Jiang, 2010, Design and methodology of a randomized controlled trial of laser iridotomy for the prevention of angle closure in southern China: the Zhongshan angle Closure Prevention trial, Ophthalmic Epidemiol, 17, 321, 10.3109/09286586.2010.508353
Gudmundsdottir, 2014, γ-Cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man, J Ocul Pharmacol Ther, 30, 35, 10.1089/jop.2013.0060
Perera, 2016, Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population, Clin Ophthalmol, 10, 757, 10.2147/OPTH.S102181
Somner, 2012, Moving from PROMs to POEMs for glaucoma care: a qualitative scoping exercise, Invest Ophthalmol Vis Sci, 53, 5940, 10.1167/iovs.12-10223
Golzan, 2015, Correlation of retinal nerve fibre layer thickness and spontaneous retinal venous pulsations in glaucoma and normal controls, PLoS One, 10, e0128433, 10.1371/journal.pone.0128433
Wang, 2015, Acute peripapillary retinal pigment epithelium changes associated with acute intraocular pressure elevation, Ophthalmology, 122, 2022, 10.1016/j.ophtha.2015.06.005
Wirostko, 2016, Risk for exfoliation syndrome in women with pelvic organ prolapse: a Utah Project on Exfoliation Syndrome (UPEXS) Study, JAMA Ophthalmol, 134, 1255, 10.1001/jamaophthalmol.2016.3411
Pasquale, 2016, Exfoliation syndrome: assembling the puzzle pieces, Acta Ophthalmol, 94, e505, 10.1111/aos.12918