Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chu, 2006, A dielectric polymer with high electric energy density and fast discharge speed, Science, 313, 334, 10.1126/science.1127798
Zhao, 2017, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance, Adv Mater, 29, 1701824, 10.1002/adma.201701824
Yao, 2017, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv Mater, 29, 1601727, 10.1002/adma.201601727
Love, 1990, Energy storage in ceramic dielectrics, J Am Ceram Soc, 73, 323, 10.1111/j.1151-2916.1990.tb06513.x
Wang, 2015, Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application, J Am Ceram Soc, 98, 559, 10.1111/jace.13325
Wu, 2016, Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage, RSC Adv, 6, 14273, 10.1039/C5RA21261H
Qu, 2016, Lead free relaxor ferroelectric ceramics with high optical transparency and energy storage ability, J Mater Chem C, 4, 1795, 10.1039/C5TC04005A
Chauhan, 2015, Anti-ferroelectric ceramics for high energy density capacitors, Materials, 8, 8009, 10.3390/ma8125439
Zhang, 2015, High energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics, Ceram Int, 41, 1139, 10.1016/j.ceramint.2014.09.041
Xu, 2017, Composition dependent structure, dielectric and energy storage properties of Pb(Tm1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3 antiferroelectric ceramics, J Eur Ceram Soc, 37, 3329, 10.1016/j.jeurceramsoc.2017.04.005
Wei, 2019, Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics, J Eur Ceram Soc, 39, 624, 10.1016/j.jeurceramsoc.2018.09.039
Puli, 2017, Electric field induced weak ferroelectricity in Ba0.70Sr0.30TiO3 ceramics capacitors, Ferroelectrics, 516, 133, 10.1080/00150193.2017.1362208
Carlson, 2000, Large dielectric constant (ε/ε0>6000) Ba0.4Sr0.6TiO3 thin films for high-performance microwave phase shifters, Appl Phys Lett, 76, 1920, 10.1063/1.126212
Li, 1997, High dielectric constant BaxSr1-xTiO3 (BST) thin films made by mocvd techniques for dram applications, Integr Ferroelectr, 17, 127, 10.1080/10584589708012988
Yamamoto, 1992, Complex impedance analysis of Nb-doped (Ba0.6Sr0.4)TiO3 PTC (positive temperature coefficient) thermistors, Jpn J Appl Phys, 31, 3120, 10.1143/JJAP.31.3120
Fletcher, 1996, Optimization of energy storage density in ceramic capacitors, J Phys D Appl Phys, 29, 253, 10.1088/0022-3727/29/1/037
Wang, 2014, Property optimization of BST-based composite glass ceramics for energy-storage applications, Ceram Int, 40, 2261, 10.1016/j.ceramint.2013.07.145
Song, 2014, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics, J Eur Ceram Soc, 34, 1209, 10.1016/j.jeurceramsoc.2013.11.039
Wang, 2015, Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤0.4) paraelectric ceramics, Ceram Int, 41, 8252, 10.1016/j.ceramint.2015.02.156
Wang, 2015, Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites, Adv Mater, 27, 6658, 10.1002/adma.201503186
Dittmer, 2012, A high-temperature-capacitor dielectric based on K0.5Na0.5NbO3-modified Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3, J Am Ceram Soc, 95, 3519, 10.1111/j.1551-2916.2012.05321.x
Wang, 2018, High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles, J Materiomics, 4, 44, 10.1016/j.jmat.2018.01.001
Manoharan, 2013, Flexible glass for high temperature energy storage capacitors, Energy Technol, 1, 313, 10.1002/ente.201300031
Smith, 2009, Alkali-free glass as a high energy density dielectric material, Mater Lett, 63, 1245, 10.1016/j.matlet.2009.02.047
Diao, 2016, Effect of SiO2 additive on dielectric response and energy storage performance of Ba0.4Sr0.6TiO3 ceramics, Ceram Int, 42, 12639, 10.1016/j.ceramint.2016.04.169
Lu, 2018, Dielectric and energy-storage performance of Ba0.5Sr0.5TiO3-SiO2 ceramic-glass composites, J Alloy Comp, 745, 127, 10.1016/j.jallcom.2018.02.173
Yang, 2018, Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition, J Eur Ceram Soc, 38, 1367, 10.1016/j.jeurceramsoc.2017.11.058
Patel, 2015, Improved electrical energy storage density in vanadium-doped BaTiO3 bulk ceramics by addition of 3BaO-3TiO2-B2O3 glass, Energy Technol, 3, 70, 10.1002/ente.201402118
Patel, 2015, Enhanced energy storage performance of glass added 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ferroelectric ceramics, J Asian Ceram Soc, 3, 383, 10.1016/j.jascer.2015.07.004
Cahn, 1969, The metastable liquidus and its effect on the crystallization of glass, J Am Ceram Soc, 52, 118, 10.1111/j.1151-2916.1969.tb11194.x
Wu, 2014, Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass-ceramics addition, J Alloy Comp, 584, 461, 10.1016/j.jallcom.2013.09.072
Shen, 2009, Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics, J Am Ceram Soc, 92, 1748, 10.1111/j.1551-2916.2009.03128.x
Li, 2013, Effect of BBS-based frit on the low temperature sintering and electrical properties of KNN lead-free piezoceramics, Int J Appl Ceram Technol, 10, 866, 10.1111/j.1744-7402.2012.02794.x
Ye, 2003, Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. PPC, IEEE International Pulsed Power Conference, 1, 719
Shen, 2013, Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage application, J Mater Sci Mater Electron, 24, 704, 10.1007/s10854-012-0798-2
Zheludev, 2012