Định lý nội suy loại Glaeser

Journal of Mathematical Sciences - Tập 202 - Trang 783-793 - 2014
I. Capuzzo Dolcetta1, A. Vitolo2
1Italo Capuzzo Dolcetta, Dipartimento di Matematica, Sapienza Università di Roma, Roma, Italy
2Dipartimento di Matematica, Università di Salerno, Salerno, Italy

Tóm tắt

Chúng tôi báo cáo về một số nghiên cứu gần đây chung của các tác giả, đồng thời bổ sung một vài kết quả mới về các bất đẳng thức nội suy cho các nghiệm phi âm của phương trình vi phân riêng loại elliptic phi tuyến.

Từ khóa

#bất đẳng thức nội suy #nghiệm phi âm #phương trình vi phân riêng #elliptic phi tuyến

Tài liệu tham khảo

M. E. Amendola, L. Rossi, and A. Vitolo, “Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains,” Abstr. Appl. Anal., id:178534 (2008). M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi Equations, Birkhäuser, Boston (1997). M. Bardi, M. G. Crandall, L.C. Evans, H. M. Soner, and P. E. Souganidis, Viscosity Solutions and Applications, Lecture Notes in Math., 1660, Springer (1997). L. A. Caffarelli, “Interior a priori estimates for solutions of fully nonlinear equations,” Ann. of Math. (2), 130, No. 1, 189–213 (1989). L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, AMS Colloquium Publications, Providence (1995). P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton–Jacobi equations and optimal control, Progr. Nonlinear Differential Equations Appl., 58, Birkhäuser, Boston (2004). I. Capuzzo Dolcetta and A. Vitolo, “Gradient and Hölder estimates for positive solutions of Pucci type equations,” C. R., Math., Acad. Sci. Paris, 346, No. 9-10, 527–532 (2008). I. Capuzzo Dolcetta and A. Vitolo, “C 1,α and Glaeser type estimates,” Rend. Mat. Ser. VII, 29, No. 1, 17–27 (2009). I. Capuzzo Dolcetta and A. Vitolo, “Glaeser’s type gradient estimates for nonnegative solutions of fully nonlinear elliptic equations,” Discrete Contin. Dyn. Syst., 28, No. 2, 539–557 (2010). I. Capuzzo Dolcetta and A. Vitolo, “Pointwise gradient estimates of Glaeser’s type,” Boll. Unione Mat. Ital. (9), 5, No. 2, 211–224 (2012). M. G. Crandall, H. Ishii, and P. L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. Amer. Math. Soc. (N.S.), 27, No. 1, 1–67 (1992). D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, New York (1983). G. Glaeser, “Racine carrée d’une fonction différentiable” [in French], Ann. Ist. Fourier, 13, No. 2, 203–210 (1963). S. Koike and T. Takahashi, “Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients,” Adv. Differ. Eq., 7, No. 4, 493–512 (2002). A. N. Kolmogorov, “Une généralization de l’inégalité de M. J. Hadamard entre les bornes supériores des dérivées successives d’une fonction” [in French], C. R. Math. Acad. Sci. Paris, 207, 764–765 (1963). E. Landau, “Einige Ungleichungen f¨ur zweimal differenzierb¨are Funktionen,” Lond. M. S. Proc. (2), 13, 43–49 (1913). Y. Y. Li and L. Nirenberg, “Generalization of a well-known inequality,” Progr. Nonlinear Differential Equations Appl., 66, 365–370, Birkhäuser, Basel (2006). V. G. Maz’ya and A. Kufner, “Variations on the theme of the inequality (f′)2 ≤ 2f sup |f′′|,” Manuscripta Math., 56, 89–104 (1986). V. G. Maz’ya and T.O. Shaposhnikova, “Sharp pointwise interpolation inequalities for derivatives,” Funct. Anal. Appl., 36, No. 1, 30–48 (2002).