Gingipain of Porphyromonas gingivalis manipulates M1 macrophage polarization through C5a pathway

In Vitro Cellular & Developmental Biology - Animal - Tập 53 - Trang 593-603 - 2017
Yubo Hou1, Haiyan Yu1, Xinchan Liu2, Gege Li1, Jiahui Pan1, Changyu Zheng3, Weixian Yu4
1Department of Periodontics, School of Stomatology, Jilin University, Changchun, China
2Department of Implantology, School of Stomatology, Jilin University, Changchun, China
3Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
4Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China

Tóm tắt

Gingipains secreted by Porphyromonas gingivalis (P. gingivalis, Pg) play an important role in maintaining macrophage infiltrating. And, this study is to evaluate effects of gingipain on M1 macrophage polarization after exposure to Porphyromonas gingivalis (P. gingivalis, Pg) and if these effects are through complement component 5a (C5a) pathway. Mouse RAW264.7 macrophages were exposed to gingipain extracts, Escherichia coli lipopolysaccharides (Ec-LPS), Pg-LPS with or without the C5aR antagonist: PMX-53 for 24 h. Then, gene expressions and protein of IL-12, IL-23, iNOS, IL-10, TNF-α, IL-1β, and IL-6 were determined by qRT-PCR and ELISA assays. Surface markers CD86 for M1 and CD206 for M2 were also evaluated by flow cytometry. The results show that gingipain extracts alone increased expressions of IL-12, IL-23, iNOS, TNF-α, IL-1β, and IL-6, but not IL-10. Gingipain extracts plus Ec-LPS decreased expressions of IL-12, IL-23, iNOS, TNF-α, IL-1β, and IL-6 in which Ec-LPS induced increase. For gingipain extracts plus Pg-LPS-treated RAW264.7, macrophages, gingipain extracts enhanced expressions of IL-12 and IL-23 in which Pg-LPS induced increase, but not iNOS and IL-10 while gingipain extracts decreased expressions of TNF-α, IL-1β, and IL-6 in which Pg-LPS induced increase. Interestingly, PMX-53 increased expressions of IL-12, IL-23, and iNOS when RAW264.7 macrophages were treated with gingipain extracts plus Ec-LPS or Pg-LPS and PMX-53, while PMX-53 decreased expressions of TNF-α, IL-1β, and IL-6. Changes of CD86-positive macrophages were consistent with cytokine changes. Our data indicate that gingipain is a critical regulator, more like a promoter to manipulate M1 macrophage polarization in order to benefit P. gingivalis infection through the C5a pathway.

Tài liệu tham khảo

Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511 Akiyama T, Miyamoto Y, Yoshimura K, Yamada A, Takami M, Suzawa T, Hoshino M, Imamura T, Akiyama C, Yasuhara R, Mishima K, Maruyama T, Kohda C, Tanaka K, Potempa J, Yasuda H, Baba K, Kamijo R (2014) Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain. J Biol Chem 289:15621–15630 Assuma R, Oates T, Cochran D, Amar S, Graves DT (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 160:403–409 Bainbridge BW, Coats SR, Darveau RP (2002) Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 7:29–37 Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333:1–9 Curtis MA, Aduse-Opoku J, Rangarajan M (2001) Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 12:192–216 Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8:481–490 Deng S, Jepsen S, Dommisch H, Stiesch M, Fickenscher H, Maser E, Chen H, Eberhard J (2011) Cysteine proteases from Porphyromonas gingivalis and TLR ligands synergistically induce the synthesis of the cytokine IL-8 in human artery endothelial cells. Arch Oral Biol 56:1583–1591 Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307 Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, Taylor GW, Page RC, Beck JD, Genco RJ (2015) Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol 86:611–622 Fokkema SJ (2010) Peripheral blood monocyte responses in periodontitis. Int J Dent Hyg 10:229–235 Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604 Graves D (2008) Cytokines that promote periodontal tissue destruction. J Periodontol 79:1585–1591 Grenier D, Tanabe S (2010) Porphyromonas gingivalis gingipains trigger a proinflammatory response in human monocyte-derived macrophages through the p38α mitogen-activated protein kinase signal transduction pathway. Toxins (Basel) 2:341–352 Guo Y, Nguyen KA (2000) Potempa J (2010) dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol 54:15–44 Hajishengallis G, Lambris JD (2010) Crosstalk pathways between toll-like receptors and the complement system. Trends Immunol 31:154–156 Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA (2011) Low abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10:497–506 Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10:717–725 Holden JA, Attard TJ, Laughton KM, Mansell A, O’Brien-Simpson NM, Reynolds EC (2014) Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun 82:4190–4203 Jain S, Coats SR, Chang AM, Darveau RP (2013) A novel class of lipoprotein lipase-sensitive molecules mediates TLR2 activation by Porphyromonas gingivalis. Infect Immun 81:1277–1286 Kendall HK, Marshall RI, Bartold PM (2001) Nitric oxide and tissue destruction. Oral Dis 7:2–10 Kolev M, Le Friec G, Kemper C (2014) Complement--tapping into new sites and effector systems. Nat Rev Immunol 14:811–820 Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238 Lam RS, O’Brien-Simpson NM, Lenzo JC, Holden JA, Brammar GC, Walsh KA, McNaughtan JE, Rowler DK, Van Rooijen N, Reynolds EC (2014) Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice. J Immunol 193:2349–2362 Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761 Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, Hashim A, Hoch S, Curtis MA, Nussbaum G, Lambris JD, Hajishengallis G (2014) Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 15:768–778 Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142 Moskow BS, Polson AM (1991) Histologic studies on the extension of the inflammatory infiltrate in human periodontitis. J Clin Periodontol 18:534–542 Pathirana RD, O’Brien-Simpson NM, Veith PD, Riley PF, Reynolds EC (2006) Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis. Microbiology 152:2381–2394 Pizzi M, Boi M, Bertoni F, Inghirami G (2016) Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia 30:1805–1815 Popadiak K, Potempa J, Riesbeck K, Blom AM (2007) Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol 178:7242–7250 Shaker O, Ghallab NA, Hamdy E, Sayed S (2013) Inducible nitric oxide synthase (iNOS) in gingival tissues of chronic periodontitis with and without diabetes: immunohistochemistry and RT-PCR study. Arch Oral Biol 58:1397–1406 Sheets SM, Potempa J, Travis J, Casiano CA, Fletcher HM (2005) Gingipains from Porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect Immun 73:1543–1552 Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF (2009) The host cytokine response to Porphyromonas gingivalis is modified by gingipains. Oral Microbiol Immunol 24:11–17 Sugawara S, Nemoto E, Tada H, Miyake K, Imamura T, Takada H (2000) Proteolysis of human monocyte CD14 by cysteine proteinases (gingipains) from Porphyromonas gingivalis leading to lipopolysaccharide hyporesponsiveness. J Immunol 165:411–418 Tancharoen S, Matsuyama T, Kawahara K, Tanaka K, Lee LJ, Machigashira M, Noguchi K, Ito T, Imamura T, Potempa J, Kikuchi K, Maruyama I (2015) Cleavage of host cytokeratin-6 by lysine-specific gingipain induces gingival inflammation in periodontitis patients. PLoS One 10:e0117775 Vanek M, Hawkins LD, Gusovsky F (1994) Coupling of the C5a receptor to Gi in U-937 cells and in cells transfected with C5a receptor cDNA. Mol Pharmacol 46:832–839 Wang M, Krauss JL, Domon H, Hosur KB, Liang S, Magotti P, Triantafilou M, Triantafilou K, Lambris JD, Hajishengallis G (2010) Microbial hijacking of complement-toll-like receptor crosstalk. Sci Signal 3:ra11 Wilensky A, Tzach-Nahman R, Potempa J, Shapira L, Nussbaum G (2015) Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection. J Innate Immun 7:127–135 Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE (1992) Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267:18902–18909 Xu Y, Tian Z, Xie P (2014) Targeting complement anaphylatoxin C5a receptor in hyperoxic lung injury in mice. Mol Med Rep 10:1786–1792