Giant phonon anharmonicity driven by the asymmetric lone pairs in Mg3Bi2

Materials Today Physics - Tập 27 - Trang 100791 - 2022
Y. Zhu1,2, J. Liu1, B. Wei3, S. Xu4, Y. Song5, X. Wang1, T.-L. Xia4, J. Chen5, G.J. Snyder6, J. Hong1
1School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
2School of Materials Science and Engineering, Beihang University, Beijing 100191, China
3Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
4Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
5Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
6Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States

Tài liệu tham khảo

Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255 Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439 Zhao, 2013, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b Gurunathan, 2020, Alloy scattering of phonons, Mater. Horiz., 7, 1452, 10.1039/C9MH01990A Voneshen, 2013, Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate, Nat. Mater., 12, 1028, 10.1038/nmat3739 Jana, 2017, Intrinsic rattler-induced low thermal conductivity in Zintl type TlInTe2, J. Am. Chem. Soc., 139, 4350, 10.1021/jacs.7b01434 Christensen, 2008, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater., 7, 811, 10.1038/nmat2273 Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090 Liu, 2012, Copper ion liquid-like thermoelectrics, Nat. Mater., 11, 422, 10.1038/nmat3273 He, 2019, High thermoelectric performance in low-cost SnS0.91Se0.09 crystals, Science, 365, 1418, 10.1126/science.aax5123 Zhu, 2019, Synergistically optimizing carrier concentration and decreasing sound velocity in n-type AgInSe2 Thermoelectrics, Chem. Mater., 31, 8182, 10.1021/acs.chemmater.9b03011 Zhao, 2014, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508, 373, 10.1038/nature13184 Li, 2015, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys., 11, 1063, 10.1038/nphys3492 Zhu, 2021, Physical insights on the low lattice thermal conductivity of AgInSe2, Mater. Today Phys., 19 Mao, 2019, High thermoelectric cooling performance of n-type Mg3Bi2-based materials, Science, 365, 495, 10.1126/science.aax7792 Pan, 2020, Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance, Energy Environ. Sci., 13, 1717, 10.1039/D0EE00838A Liu, 2022, Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling, Nat. Commun., 13, 1120, 10.1038/s41467-022-28798-4 Yang, 2022, Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material, Joule, 6, 193, 10.1016/j.joule.2021.11.008 Liu, 2011, Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites, Adv. Energy Mater., 1, 577, 10.1002/aenm.201100149 Tamaki, 2016, Isotropic conduction network and defect chemistry in Mg3Sb2 -Based layered zintl compounds with high thermoelectric performance, Adv. Mater., 28, 10182, 10.1002/adma.201603955 Zhang, 2017, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands, Nat. Commun., 8 Mao, 2017, Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials, Proc. Natl. Acad. Sci. U.S.A., 114, 10548, 10.1073/pnas.1711725114 Imasato, 2018, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horiz., 5, 59, 10.1039/C7MH00865A Ohno, 2018, Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics, Joule, 2, 141, 10.1016/j.joule.2017.11.005 Shi, 2019, Efficient Sc-doped Mg3.05–xScxSbBi thermoelectrics near room temperature, Chem. Mater., 31, 8987, 10.1021/acs.chemmater.9b03156 Shuai, 2018, Significant role of Mg stoichiometry in designing high thermoelectric performance for Mg3(Sb,Bi)2-Based n-type zintls, J. Am. Chem. Soc., 140, 1910, 10.1021/jacs.7b12767 Zhang, 2019, High-performance n-type Mg3Sb2 towards thermoelectric application near room temperature, Adv. Funct. Mater., 30 Wood, 2019, Improvement of low-temperature zT in a Mg3Sb2 -Mg3Bi2 solid solution via Mg-vapor annealing, Adv. Mater., 31, 10.1002/adma.201902337 Song, 2019, Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5, Mater. Today Phys., 8, 25, 10.1016/j.mtphys.2018.12.004 Imasato, 2020, Metallic n-Type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance, Adv. Mater., 32, 10.1002/adma.201908218 Li, 2020, Point defect engineering and machinability in n-type Mg3Sb2-based materials, Mater. Today Phys., 15 Zhang, 2020, Rapid one-step synthesis and compaction of high-performance n-Type Mg3Sb2 thermoelectrics, Angew. Chem. Int. Ed., 59, 4278, 10.1002/anie.201912909 Liu, 2012, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1- xSnx solid solutions, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.166601 Hsu, 2004, Cubic AgPbmSbTe2+m bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963 Shi, 2011, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc., 133, 7837, 10.1021/ja111199y Pei, 2011, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878 Chang, 2018, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals, Science, 360, 778, 10.1126/science.aaq1479 Su, 2022, High thermoelectric performance realized through manipulating layered phonon-electron decoupling, Science, 375, 1385, 10.1126/science.abn8997 Delaire, 2011, Giant anharmonic phonon scattering in PbTe, Nat. Mater., 10, 614, 10.1038/nmat3035 Pang, 2013, Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.157401 Uchiyama, 2018, Phonon lifetime observation in epitaxial ScN film with inelastic X-ray scattering spectroscopy, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.235901 Wei, 2022, Giant anisotropic in-plane thermal conduction induced by anomalous phonons in pentagonal PdSe2, Mater. Today Phys., 22 Qian, 2021, Phonon-engineered extreme thermal conductivity materials, Nat. Mater., 20, 1188, 10.1038/s41563-021-00918-3 Ding, 2021, Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb, Bi)2 thermoelectrics, Sci. Adv., 7, 1449, 10.1126/sciadv.abg1449 Kanno, 2021, High‐density frenkel defects as origin of n‐Type thermoelectric performance and low thermal conductivity in Mg3Sb2‐based materials, Adv. Funct. Mater., 31, 10.1002/adfm.202008469 Toberer, 2011, Phonon engineering through crystal chemistry, J. Mater. Chem., 21, 10.1039/c1jm11754h Srivastava, 1990, 113 Peng, 2018, An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure, Joule, 2, 1879, 10.1016/j.joule.2018.06.014 Nielsen, 2013, Lone pair electrons minimize lattice thermal conductivity, Energy Environ. Sci., 6, 570, 10.1039/C2EE23391F Miao, 2013, On the stereochemical inertness of the auride lone pair: ab initio studies of AAu (A = K, Rb, Cs), Inorg. Chem., 52, 8183, 10.1021/ic400947p Calderón-Cueva, 2021, Anisotropic structural collapse of Mg3Sb2 and Mg3Bi2 at high pressure, Chem. Mater., 33, 567, 10.1021/acs.chemmater.0c03678 Skoug, 2011, Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.235901 Qin, 2018, Lone-pair electrons induced anomalous enhancement of thermal transport in strained planar two-dimensional materials, Nano Energy, 50, 425, 10.1016/j.nanoen.2018.05.040 Jana, 2016, The origin of ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling, Angew. Chem. Int. Ed., 55, 7792, 10.1002/anie.201511737 Zeier, 2016, Thinking like a chemist: intuition in thermoelectric materials, Angew. Chem. Int. Ed., 55, 6826, 10.1002/anie.201508381 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Heyd, 2003, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Togo, 2015, First principles phonon calculations in materials science, Scripta Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021 Zhang, 2018, Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials, Nat. Commun., 9, 4716, 10.1038/s41467-018-06980-x