Giant phonon anharmonicity driven by the asymmetric lone pairs in Mg3Bi2
Tài liệu tham khảo
Tan, 2016, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116, 12123, 10.1021/acs.chemrev.6b00255
Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439
Zhao, 2013, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance, Energy Environ. Sci., 6, 3346, 10.1039/c3ee42187b
Gurunathan, 2020, Alloy scattering of phonons, Mater. Horiz., 7, 1452, 10.1039/C9MH01990A
Voneshen, 2013, Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate, Nat. Mater., 12, 1028, 10.1038/nmat3739
Jana, 2017, Intrinsic rattler-induced low thermal conductivity in Zintl type TlInTe2, J. Am. Chem. Soc., 139, 4350, 10.1021/jacs.7b01434
Christensen, 2008, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater., 7, 811, 10.1038/nmat2273
Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090
Liu, 2012, Copper ion liquid-like thermoelectrics, Nat. Mater., 11, 422, 10.1038/nmat3273
He, 2019, High thermoelectric performance in low-cost SnS0.91Se0.09 crystals, Science, 365, 1418, 10.1126/science.aax5123
Zhu, 2019, Synergistically optimizing carrier concentration and decreasing sound velocity in n-type AgInSe2 Thermoelectrics, Chem. Mater., 31, 8182, 10.1021/acs.chemmater.9b03011
Zhao, 2014, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508, 373, 10.1038/nature13184
Li, 2015, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys., 11, 1063, 10.1038/nphys3492
Zhu, 2021, Physical insights on the low lattice thermal conductivity of AgInSe2, Mater. Today Phys., 19
Mao, 2019, High thermoelectric cooling performance of n-type Mg3Bi2-based materials, Science, 365, 495, 10.1126/science.aax7792
Pan, 2020, Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance, Energy Environ. Sci., 13, 1717, 10.1039/D0EE00838A
Liu, 2022, Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling, Nat. Commun., 13, 1120, 10.1038/s41467-022-28798-4
Yang, 2022, Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material, Joule, 6, 193, 10.1016/j.joule.2021.11.008
Liu, 2011, Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites, Adv. Energy Mater., 1, 577, 10.1002/aenm.201100149
Tamaki, 2016, Isotropic conduction network and defect chemistry in Mg3Sb2 -Based layered zintl compounds with high thermoelectric performance, Adv. Mater., 28, 10182, 10.1002/adma.201603955
Zhang, 2017, Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands, Nat. Commun., 8
Mao, 2017, Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials, Proc. Natl. Acad. Sci. U.S.A., 114, 10548, 10.1073/pnas.1711725114
Imasato, 2018, Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance, Mater. Horiz., 5, 59, 10.1039/C7MH00865A
Ohno, 2018, Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics, Joule, 2, 141, 10.1016/j.joule.2017.11.005
Shi, 2019, Efficient Sc-doped Mg3.05–xScxSbBi thermoelectrics near room temperature, Chem. Mater., 31, 8987, 10.1021/acs.chemmater.9b03156
Shuai, 2018, Significant role of Mg stoichiometry in designing high thermoelectric performance for Mg3(Sb,Bi)2-Based n-type zintls, J. Am. Chem. Soc., 140, 1910, 10.1021/jacs.7b12767
Zhang, 2019, High-performance n-type Mg3Sb2 towards thermoelectric application near room temperature, Adv. Funct. Mater., 30
Wood, 2019, Improvement of low-temperature zT in a Mg3Sb2 -Mg3Bi2 solid solution via Mg-vapor annealing, Adv. Mater., 31, 10.1002/adma.201902337
Song, 2019, Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5, Mater. Today Phys., 8, 25, 10.1016/j.mtphys.2018.12.004
Imasato, 2020, Metallic n-Type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance, Adv. Mater., 32, 10.1002/adma.201908218
Li, 2020, Point defect engineering and machinability in n-type Mg3Sb2-based materials, Mater. Today Phys., 15
Zhang, 2020, Rapid one-step synthesis and compaction of high-performance n-Type Mg3Sb2 thermoelectrics, Angew. Chem. Int. Ed., 59, 4278, 10.1002/anie.201912909
Liu, 2012, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1- xSnx solid solutions, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.166601
Hsu, 2004, Cubic AgPbmSbTe2+m bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963
Shi, 2011, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc., 133, 7837, 10.1021/ja111199y
Pei, 2011, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878
Chang, 2018, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals, Science, 360, 778, 10.1126/science.aaq1479
Su, 2022, High thermoelectric performance realized through manipulating layered phonon-electron decoupling, Science, 375, 1385, 10.1126/science.abn8997
Delaire, 2011, Giant anharmonic phonon scattering in PbTe, Nat. Mater., 10, 614, 10.1038/nmat3035
Pang, 2013, Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.157401
Uchiyama, 2018, Phonon lifetime observation in epitaxial ScN film with inelastic X-ray scattering spectroscopy, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.235901
Wei, 2022, Giant anisotropic in-plane thermal conduction induced by anomalous phonons in pentagonal PdSe2, Mater. Today Phys., 22
Qian, 2021, Phonon-engineered extreme thermal conductivity materials, Nat. Mater., 20, 1188, 10.1038/s41563-021-00918-3
Ding, 2021, Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb, Bi)2 thermoelectrics, Sci. Adv., 7, 1449, 10.1126/sciadv.abg1449
Kanno, 2021, High‐density frenkel defects as origin of n‐Type thermoelectric performance and low thermal conductivity in Mg3Sb2‐based materials, Adv. Funct. Mater., 31, 10.1002/adfm.202008469
Toberer, 2011, Phonon engineering through crystal chemistry, J. Mater. Chem., 21, 10.1039/c1jm11754h
Srivastava, 1990, 113
Peng, 2018, An unlikely route to low lattice thermal conductivity: small atoms in a simple layered structure, Joule, 2, 1879, 10.1016/j.joule.2018.06.014
Nielsen, 2013, Lone pair electrons minimize lattice thermal conductivity, Energy Environ. Sci., 6, 570, 10.1039/C2EE23391F
Miao, 2013, On the stereochemical inertness of the auride lone pair: ab initio studies of AAu (A = K, Rb, Cs), Inorg. Chem., 52, 8183, 10.1021/ic400947p
Calderón-Cueva, 2021, Anisotropic structural collapse of Mg3Sb2 and Mg3Bi2 at high pressure, Chem. Mater., 33, 567, 10.1021/acs.chemmater.0c03678
Skoug, 2011, Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.235901
Qin, 2018, Lone-pair electrons induced anomalous enhancement of thermal transport in strained planar two-dimensional materials, Nano Energy, 50, 425, 10.1016/j.nanoen.2018.05.040
Jana, 2016, The origin of ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling, Angew. Chem. Int. Ed., 55, 7792, 10.1002/anie.201511737
Zeier, 2016, Thinking like a chemist: intuition in thermoelectric materials, Angew. Chem. Int. Ed., 55, 6826, 10.1002/anie.201508381
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Heyd, 2003, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Togo, 2015, First principles phonon calculations in materials science, Scripta Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021
Zhang, 2018, Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials, Nat. Commun., 9, 4716, 10.1038/s41467-018-06980-x