Giant electroresistance in hafnia-based ferroelectric tunnel junctions via enhanced polarization

Device - Tập 1 - Trang 100004 - 2023
Zhaomeng Gao1, Weifeng Zhang2, Qilan Zhong1, Yonghui Zheng1, Shuxian Lv3, Qiqiao Wu4, Yanling Song2, Shengjie Zhao3, Yunzhe Zheng1, Tianjiao Xin1, Yiwei Wang1, Wei Wei3, Xinqian Ren2, Jianguo Yang3, Chen Ge5, Jiahua Tao1, Yan Cheng1, Hangbing Lyu3
1Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
2Key Laboratory of Photovoltaic Materials of Henan Province, Henan University, Kaifeng 475004, China
3Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
4School of Microelectronics, Fudan University, Shanghai, 200433, China
5Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Tài liệu tham khảo

Garcia, 2009, Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, 460, 81, 10.1038/nature08128 Wang, 2018, Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit, Nat. Commun., 9, 3319, 10.1038/s41467-018-05662-y Cheema, 2020, Enhanced ferroelectricity in ultrathin films grown directly on silicon, Nature, 580, 478, 10.1038/s41586-020-2208-x Chouprik, 2017, Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 fifilms on Si, Microelectron. Eng., 178, 250, 10.1016/j.mee.2017.05.028 Esaki, 1971, Polar switch, IBM Tech. Discl. Bull., 13, 2161 Chanthbouala, 2011, Solid-state memories based on ferroelectric tunnel junctions, Nat. Nanotechnol., 7, 101, 10.1038/nnano.2011.213 Wen, 2013, Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions, Nat. Mater., 12, 617, 10.1038/nmat3649 Li, 2019, Giant electroresistance in ferroionic tunnel junctions, iScience, 16, 368, 10.1016/j.isci.2019.05.043 Xi, 2017, Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier, Nat. Commun., 8, 10.1038/ncomms15217 Barrionuevo, 2016, Enhanced tunneling electroresistance in Pt/PZT/LSMO ferroelectric tunnel junctions in presence of magnetic field, Integ. Ferroelectr., 174, 174, 10.1080/10584587.2016.1196053 Luo, 2022, High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing, Nat. Commun., 13, 699, 10.1038/s41467-022-28303-x Ma, 2020, Sub-nanosecond memristor based on ferroelectric tunnel junction, Nat. Commun., 11, 1439, 10.1038/s41467-020-15249-1 Böscke, 2010, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett., 99 Jiao, 2021, Electroresistance in metal/ferroelectric/semiconductor tunnel junctions based on a Hf0.5Zr0.5O2 barrier, Appl. Phys. Lett., 118, 10.1063/5.0053959 Prasad, 2021, Large tunnel electroresistance with ultrathin Hf0.5Zr0.5O2 ferroelectric tunnel barriers, Adv. Electron. Mater., 7, 10.1002/aelm.202001074 Xu, 2015, Ferroelectric polarization reversal via successive ferroelastic transitions, Nat. Mater., 14, 79, 10.1038/nmat4119 Peng, 2020, Constructing polymorphic nanodomains in BaTiO3 films via epitaxial symmetry engineering, Adv. Funct. Mater., 30, 10.1002/adfm.201910569 Brinkman, 1970, Tunneling conductance of asymmetrical barriers, J. Appl. Phys., 41, 1915, 10.1063/1.1659141 Jin Hu, 2016, Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions, Nat. Commun., 7, 10.1038/ncomms10808 Wen, 2020, Ferroelectric tunnel junctions: modulations on the potential barrier, Adv. Mater., 32, 10.1002/adma.201904123 Lee, 2021, Unveiling the origin of robust ferroelectricity in Sub-2 nm hafnium zirconium oxide films, ACS Appl. Mater. Interfaces, 13, 36499, 10.1021/acsami.1c08718 Hyuk Park, 2014, The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity, Appl. Phys. Lett., 104, 10.1063/1.4866008 Materlik, 2015, The origin of ferroelectricity in Hf1-xZrxO2: a computational investigation and a surface energy model, J. Appl. Phys., 117, 10.1063/1.4916707 Park, 2018, Understanding the formation of the metastable ferroelectric phase in hafnia–zirconia solid solution thin films, Nanoscale, 10, 716, 10.1039/C7NR06342C Zheng, 2021, In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase Bi, 2001, Synaptic modification BY correlated, Annu. Rev. Neurosci., 24, 139, 10.1146/annurev.neuro.24.1.139 Lee, 2020, Scale-free ferroelectricity induced by flat phonon bands in HfO2, Science, 369, 1343, 10.1126/science.aba0067 Cheema, 2022, Emergent ferroelectricity in subnanometer binary oxide films on silicon, Science, 376, 648, 10.1126/science.abm8642 Hazan, 2018, Bindsnet: a machine learning-oriented spiking neural networks library in python, Front. Neuroinform., 12, 89, 10.3389/fninf.2018.00089 Diehl, 2015, Unsupervised learning of digit recognition using spike-timing-dependent plasticity, Front. Comput. Neurosci., 9, 99, 10.3389/fncom.2015.00099 Estandía, 2020, Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2 (111) on La2/3Sr1/3MnO3 (001), Cryst. Growth Des., 20, 3801, 10.1021/acs.cgd.0c00095 Wei, 2018, A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films, Nat. Mater., 17, 1095, 10.1038/s41563-018-0196-0