Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sun, 2012
Reinhard, 2010
S.-J. Youm, W.-H. Cho, K.-S. Hong, High dynamic range video through fusion of exposure-controlled frames, in: Proc. IAPR Conference on Machine VIsion Applications, 2005, pp. 546–549.
S. Gava, Master thesis: Study and implementation of a High-Dynamic Range (HDR) imaging algorithm for a space telescope, 2018.
Artusi, 2017, High dynamic range imaging technology [Lecture Notes], IEEE Signal Process. Mag., 34, 165, 10.1109/MSP.2017.2716957
DPReview, Fujifilm announce SuperCCD SR, DPReview, 2014. https://www.dpreview.com/articles/6851251325/fujisuperccdsr (accessed October 18, 2018).
NIT - New Imaging Technologies, 2018. http://new-imaging-technologies.com/en (accessed October 1, 2018).
G. Eilertsen, J. Unger, R.K. Mantiuk, Evaluation of tone mapping operators for HDR video, in: High Dynamic Range Video, 2016, pp. 185–207.
Lee, 2018, High dynamic range image tone mapping based on asymmetric model of retinal adaptation, Signal Process. Image Commun., 68, 120, 10.1016/j.image.2018.07.008
Ma, 2014, High dynamic range image tone mapping by optimizing tone mapped image quality index, Proc. IEEE Int. Conf. Multimedia Expo, 1
Huo, 2016, Single image-based HDR imaging with CRF estimation, 1
Florea, 2015, High dynamic range imaging by perceptual logarithmic exposure merging, Int. J. Appl. Math. Comput. Sci., 25, 943, 10.1515/amcs-2015-0067
Burt, 1983, The Laplacian pyramid as a compact image code, IEEE Trans. Commun., 31, 532, 10.1109/TCOM.1983.1095851
Li, 2012, Fast multi-exposure image fusion with median filter and recursive filter, IEEE Trans. Consum. Electron., 58, 626, 10.1109/TCE.2012.6227469
Shen, 2014, Exposure fusion using boosting Laplacian pyramid, IEEE Trans. Cybern., 44, 1579, 10.1109/TCYB.2013.2290435
Liu, 2015, Dense SIFT for ghost-free multi-exposure fusion, J. Vis. Commun. Image R., 31, 208, 10.1016/j.jvcir.2015.06.021
A.V. Vanmali, S.G. Kelkar, V.M. Gadre, Multi-exposure image fusion for dynamic scenes without ghost effect, in: Proc. IEEE National Conf. on Communications (NCC), 2015, pp. 1–6.
Li, 2017, Detail-enhanced multi-scale exposure fusion, IEEE Trans. Image Process., 26, 1243, 10.1109/TIP.2017.2651366
Huang, 2018, A color multi-exposure image fusion approach using structural patch decomposition, IEEE Access, 6, 42877, 10.1109/ACCESS.2018.2859355
Hasinoff, 2016, Burst photography for high dynamic range and low-light imaging on mobile cameras, ACM Trans. Graph., 35, 10.1145/2980179.2980254
Cai, 2018, Learning a deep single image contrast enhancer from multi-exposure images, IEEE Trans. Image Process., 27, 2049, 10.1109/TIP.2018.2794218
Kalantari, 2017, Deep high dynamic range imaging of dynamic scenes, ACM Trans. Graph., 36, 10.1145/3072959.3073609
Wu, 2018, Deep high dynamic range imaging with large foreground motions, 117
Q. Yan, D. Gong, Q. Shi, A.V.D. Hengel, C. Shen, I. Reid, Y. Zhang, Attention-guided Network for Ghost-free High Dynamic Range Imaging, 2019. arXiv preprint arXiv: 1904.10293.
Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94
Li, 1995, Multisensor image fusion using the wavelet transform, Graph. Models Image Process., 57, 235, 10.1006/gmip.1995.1022
Liu, 2011, Sift flow: dense correspondence across scenes and its applications, IEEE Trans. Pattern Anal. Mach. Intell., 33, 978, 10.1109/TPAMI.2010.147
Liu, 2015, Multi-focus image fusion with dense sift, Inf. Fusion, 23, 139, 10.1016/j.inffus.2014.05.004
Zhang, 2012, Gradient-directed multi-exposure composition, IEEE Trans. Image Process, 21, 2318, 10.1109/TIP.2011.2170079
Jinno, 2012, Multiple exposure fusion for high dynamic range image acquisition, IEEE Trans. Image Process., 21, 358, 10.1109/TIP.2011.2160953
Oh, 2015, Robust high dynamic range imaging by rank minimization, IEEE Trans. Pattern Anal. Mach. Intell., 37, 1219, 10.1109/TPAMI.2014.2361338
Gonzalea, 2004
Li, 2007, Efficient spatio-temporal segmentation for extracting moving objects in video sequences, IEEE Trans. Consum. Electron., 53, 1161, 10.1109/TCE.2007.4341600
Li, 2012, Detail-enhanced exposure fusion, IEEE Trans. Image Process., 21, 4672, 10.1109/TIP.2012.2207396
Gastal, 2011, Domain transform for edge-aware image and video processing, ACM Trans. Graph., 30, 69, 10.1145/2010324.1964964
Paris, 2006, A fast approximation of the bilateral filter using a signal processing approach, Proc. ECCV, 568
Liu, 2011, Sift fow: dense correspondence across scenes and its applications, IEEE Trans. Pattern Anal. Mach. Intell., 33, 978, 10.1109/TPAMI.2010.147
Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94
Codes- Scholar Homepage, http://www.escience.cn/people/liuyu1/Codes.html (accessed August 15, 2018).
Kede Ma, https://ece.uwaterloo.ca/k29ma/ (accessed August 15, 2018).
M. Nejati, M. Karimi, S.R. Soroushmehr, N. Karimi, S. Samavi, K. Najarian, Fast exposure fusion using exposedness function, in: proc. IEEE ICIP, 2017, pp. 2234–2238.
Xydeas, 2000, Objective image fusion performance measure, Electron. Lett., 36, 308, 10.1049/el:20000267
Ma, 2015, Perceptual quality assessment for multiexposure image fusion, IEEETrans. ImageProcess, 24, 3345, 10.1109/TIP.2015.2442920
Mittal, 2013, Making a ‘completely blind’ image quality analyzer, IEEE Signal Process. Lett., 20, 209, 10.1109/LSP.2012.2227726
Liu, 2012, Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study, IEEE Trans. Pattern Anal. Mach. Intell., 34, 94, 10.1109/TPAMI.2011.109
Srikantha, 2012, Ghost detection and removal for high dynamic range images: recent advances, Signal Process.: Image Commun., 27, 650