Getting to know low-light images with the Exclusively Dark dataset
Tài liệu tham khảo
Bilodeau, 2014, Thermal–visible registration of human silhouettes: A similarity measure performance evaluation, Infrared Phys. Technol., 64, 79, 10.1016/j.infrared.2014.02.005
Chen, 2018, Learning to see in the dark
Cheng, 2014, Bing: Binarized normed gradients for objectness estimation at 300fps, 3286
Dabov, 2007, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 2080, 10.1109/TIP.2007.901238
Dalal, 2005, Histograms of oriented gradients for human detection, 886
Davis, 2005, A two-stage template approach to person detection in thermal imagery, 364
Davis, 2007, Background-subtraction using contour-based fusion of thermal and visible imagery, Comput. Vision Image Understanding, 106, 162, 10.1016/j.cviu.2006.06.010
Dollár, P., Piotr’s Computer Vision Matlab Toolbox (PMT). https://github.com/pdollar/toolbox.
Donahue, 2014, Decaf: A deep convolutional activation feature for generic visual recognition, 647
Dong, 2007, Nighttime pedestrian detection with near infrared using cascaded classifiers, VI
Elguebaly, 2013, Finite asymmetric generalized gaussian mixture models learning for infrared object detection, Comput. Vision Image Understanding, 117, 1659, 10.1016/j.cviu.2013.07.007
Everingham, 2015, The pascal visual object classes challenge: A retrospective, Int. J. Comput. Vis., 111, 98, 10.1007/s11263-014-0733-5
Everingham, 2010, The pascal visual object classes (voc) challenge, Int. J. Comput. Vis., 88, 303, 10.1007/s11263-009-0275-4
Fang, 2016, Adobe boxes: Locating object proposals using object adobes, IEEE Trans. Image Process., 25, 4116
Felzenszwalb, 2008, A discriminatively trained, multiscale, deformable part model, 1
Fu, 2016, A fusion-based enhancing method for weakly illuminated images, Signal Process., 129, 82, 10.1016/j.sigpro.2016.05.031
Fu, 2016, A weighted variational model for simultaneous reflectance and illumination estimation, 2782
Guo, 2017, Lime: Low-light image enhancement via illumination map estimation, IEEE Trans. Image Process., 26, 982, 10.1109/TIP.2016.2639450
He, 2016, Deep residual learning for image recognition, 770
Huang, 2013, Efficient contrast enhancement using adaptive gamma correction with weighting distribution, IEEE Trans. Image Process., 22, 1032, 10.1109/TIP.2012.2226047
Jung, 2017, Low light image enhancement with dual-tree complex wavelet transform, J. Vis. Commun. Image Represent., 42, 28, 10.1016/j.jvcir.2016.11.001
Kang, 2014, Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching, Pattern Recognit., 47, 3750, 10.1016/j.patcog.2014.06.004
Kim, 2015, A novel approach for denoising and enhancement of extremely low-light video, IEEE Trans. Consum. Electron., 61, 72, 10.1109/TCE.2015.7064113
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, 1097
Le Callet, P., Autrusseau, F., 2005. Subjective quality assessment irccyn/ivc database. http://www.irccyn.ec-nantes.fr/ivcdb/.
Lee, 2017, How deep learning extracts and learns leaf features for plant classification, Pattern Recognit., 71, 1, 10.1016/j.patcog.2017.05.015
Lee, 2005, Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images, IEEE Trans. Consum. Electron., 51, 648, 10.1109/TCE.2005.1468014
Leo, 2017, Computer vision for assistive technologies, Comput. Vision Image Understanding, 154, 1, 10.1016/j.cviu.2016.09.001
Li, 2007, Illumination invariant face recognition using near-infrared images, IEEE Trans. Pattern Anal. Mach. Intell., 29, 627, 10.1109/TPAMI.2007.1014
Li, 2018, Structure-revealing low-light image enhancement via robust retinex model, IEEE Trans. Image Process., 27, 2828, 10.1109/TIP.2018.2810539
Li, 2015, A low-light image enhancement method for both denoising and contrast enlarging, 3730
Lim, 2015, Robust contrast enhancement of noisy low-light images: Denoising-enhancement-completion, 4131
Lin, 2014, Microsoft coco: Common objects in context, 740
Loh, 2015, Unveiling contrast in darkness, 266
Lore, 2017, Llnet: A deep autoencoder approach to natural low-light image enhancement, Pattern Recognit., 61, 650, 10.1016/j.patcog.2016.06.008
Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94
Maaten, 2008, Visualizing data using t-sne, J. Mach. Learn. Res., 9, 2579
Mahendran, 2015, Understanding deep image representations by inverting them, 5188
Malm, 2007, Adaptive enhancement and noise reduction in very low light-level video
Olmeda, D., Premebida, C., Nunes, U., Armingol, J.M., Escalera, A.d.l., 2013. Lsi far infrared pedestrian dataset.
Philbin, 2008, Lost in quantization: Improving particular object retrieval in large scale image databases, 1
Qi, 2014, Use of sparse representation for pedestrian detection in thermal images, 274
Redmon, 2016, You only look once: Unified, real-time object detection, 779
Remez, T., Litany, O., Giryes, R., Bronstein, A.M., 2017. Deep convolutional denoising of low-light images. arXiv preprint arXiv:1701.01687.
Ren, 2015, Faster r-cnn: Towards real-time object detection with region proposal networks, 91
Russakovsky, 2015, ImageNet large scale visual recognition challenge, Int. J. Comput. Vis., 115, 211, 10.1007/s11263-015-0816-y
Russakovsky, 2015, Imagenet large scale visual recognition challenge, Int. J. Comput. Vis., 115, 211, 10.1007/s11263-015-0816-y
Russell, 2008, Labelme: a database and web-based tool for image annotation, Int. J. Comput. Vis., 77, 157, 10.1007/s11263-007-0090-8
Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J., 2017. Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488.
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Su, 2017, Low light image enhancement based on two-step noise suppression, 1977
Torralba, 2011, Unbiased look at dataset bias, 1521
Wang, 2010, Locality-constrained linear coding for image classification, 3360
Wang, 2013, Naturalness preserved enhancement algorithm for non-uniform illumination images, IEEE Trans. Image Process., 22, 3538, 10.1109/TIP.2013.2261309
Wei, 2018, Deep retinex decomposition for low-light enhancement
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579.
Zeiler, 2014, Visualizing and understanding convolutional networks, 818
Zhao, 2015, Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification, Pattern Recognit., 48, 1947, 10.1016/j.patcog.2014.12.013
Zitnick, 2014, Edge boxes: Locating object proposals from edges, 391