Getting to know low-light images with the Exclusively Dark dataset

Computer Vision and Image Understanding - Tập 178 - Trang 30-42 - 2019
Yuen Peng Loh1, Chee Seng Chan1
1Centre of Image and Signal Processing, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, 50603, Malaysia

Tài liệu tham khảo

Bilodeau, 2014, Thermal–visible registration of human silhouettes: A similarity measure performance evaluation, Infrared Phys. Technol., 64, 79, 10.1016/j.infrared.2014.02.005 Chen, 2018, Learning to see in the dark Cheng, 2014, Bing: Binarized normed gradients for objectness estimation at 300fps, 3286 Dabov, 2007, Image denoising by sparse 3-d transform-domain collaborative filtering, IEEE Trans. Image Process., 16, 2080, 10.1109/TIP.2007.901238 Dalal, 2005, Histograms of oriented gradients for human detection, 886 Davis, 2005, A two-stage template approach to person detection in thermal imagery, 364 Davis, 2007, Background-subtraction using contour-based fusion of thermal and visible imagery, Comput. Vision Image Understanding, 106, 162, 10.1016/j.cviu.2006.06.010 Dollár, P., Piotr’s Computer Vision Matlab Toolbox (PMT). https://github.com/pdollar/toolbox. Donahue, 2014, Decaf: A deep convolutional activation feature for generic visual recognition, 647 Dong, 2007, Nighttime pedestrian detection with near infrared using cascaded classifiers, VI Elguebaly, 2013, Finite asymmetric generalized gaussian mixture models learning for infrared object detection, Comput. Vision Image Understanding, 117, 1659, 10.1016/j.cviu.2013.07.007 Everingham, 2015, The pascal visual object classes challenge: A retrospective, Int. J. Comput. Vis., 111, 98, 10.1007/s11263-014-0733-5 Everingham, 2010, The pascal visual object classes (voc) challenge, Int. J. Comput. Vis., 88, 303, 10.1007/s11263-009-0275-4 Fang, 2016, Adobe boxes: Locating object proposals using object adobes, IEEE Trans. Image Process., 25, 4116 Felzenszwalb, 2008, A discriminatively trained, multiscale, deformable part model, 1 Fu, 2016, A fusion-based enhancing method for weakly illuminated images, Signal Process., 129, 82, 10.1016/j.sigpro.2016.05.031 Fu, 2016, A weighted variational model for simultaneous reflectance and illumination estimation, 2782 Guo, 2017, Lime: Low-light image enhancement via illumination map estimation, IEEE Trans. Image Process., 26, 982, 10.1109/TIP.2016.2639450 He, 2016, Deep residual learning for image recognition, 770 Huang, 2013, Efficient contrast enhancement using adaptive gamma correction with weighting distribution, IEEE Trans. Image Process., 22, 1032, 10.1109/TIP.2012.2226047 Jung, 2017, Low light image enhancement with dual-tree complex wavelet transform, J. Vis. Commun. Image Represent., 42, 28, 10.1016/j.jvcir.2016.11.001 Kang, 2014, Nighttime face recognition at large standoff: Cross-distance and cross-spectral matching, Pattern Recognit., 47, 3750, 10.1016/j.patcog.2014.06.004 Kim, 2015, A novel approach for denoising and enhancement of extremely low-light video, IEEE Trans. Consum. Electron., 61, 72, 10.1109/TCE.2015.7064113 Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, 1097 Le Callet, P., Autrusseau, F., 2005. Subjective quality assessment irccyn/ivc database. http://www.irccyn.ec-nantes.fr/ivcdb/. Lee, 2017, How deep learning extracts and learns leaf features for plant classification, Pattern Recognit., 71, 1, 10.1016/j.patcog.2017.05.015 Lee, 2005, Noise-adaptive spatio-temporal filter for real-time noise removal in low light level images, IEEE Trans. Consum. Electron., 51, 648, 10.1109/TCE.2005.1468014 Leo, 2017, Computer vision for assistive technologies, Comput. Vision Image Understanding, 154, 1, 10.1016/j.cviu.2016.09.001 Li, 2007, Illumination invariant face recognition using near-infrared images, IEEE Trans. Pattern Anal. Mach. Intell., 29, 627, 10.1109/TPAMI.2007.1014 Li, 2018, Structure-revealing low-light image enhancement via robust retinex model, IEEE Trans. Image Process., 27, 2828, 10.1109/TIP.2018.2810539 Li, 2015, A low-light image enhancement method for both denoising and contrast enlarging, 3730 Lim, 2015, Robust contrast enhancement of noisy low-light images: Denoising-enhancement-completion, 4131 Lin, 2014, Microsoft coco: Common objects in context, 740 Loh, 2015, Unveiling contrast in darkness, 266 Lore, 2017, Llnet: A deep autoencoder approach to natural low-light image enhancement, Pattern Recognit., 61, 650, 10.1016/j.patcog.2016.06.008 Lowe, 2004, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 60, 91, 10.1023/B:VISI.0000029664.99615.94 Maaten, 2008, Visualizing data using t-sne, J. Mach. Learn. Res., 9, 2579 Mahendran, 2015, Understanding deep image representations by inverting them, 5188 Malm, 2007, Adaptive enhancement and noise reduction in very low light-level video Olmeda, D., Premebida, C., Nunes, U., Armingol, J.M., Escalera, A.d.l., 2013. Lsi far infrared pedestrian dataset. Philbin, 2008, Lost in quantization: Improving particular object retrieval in large scale image databases, 1 Qi, 2014, Use of sparse representation for pedestrian detection in thermal images, 274 Redmon, 2016, You only look once: Unified, real-time object detection, 779 Remez, T., Litany, O., Giryes, R., Bronstein, A.M., 2017. Deep convolutional denoising of low-light images. arXiv preprint arXiv:1701.01687. Ren, 2015, Faster r-cnn: Towards real-time object detection with region proposal networks, 91 Russakovsky, 2015, ImageNet large scale visual recognition challenge, Int. J. Comput. Vis., 115, 211, 10.1007/s11263-015-0816-y Russakovsky, 2015, Imagenet large scale visual recognition challenge, Int. J. Comput. Vis., 115, 211, 10.1007/s11263-015-0816-y Russell, 2008, Labelme: a database and web-based tool for image annotation, Int. J. Comput. Vis., 77, 157, 10.1007/s11263-007-0090-8 Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., Ma, J., 2017. Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488. Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Su, 2017, Low light image enhancement based on two-step noise suppression, 1977 Torralba, 2011, Unbiased look at dataset bias, 1521 Wang, 2010, Locality-constrained linear coding for image classification, 3360 Wang, 2013, Naturalness preserved enhancement algorithm for non-uniform illumination images, IEEE Trans. Image Process., 22, 3538, 10.1109/TIP.2013.2261309 Wei, 2018, Deep retinex decomposition for low-light enhancement Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H., 2015. Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579. Zeiler, 2014, Visualizing and understanding convolutional networks, 818 Zhao, 2015, Robust pedestrian detection in thermal infrared imagery using a shape distribution histogram feature and modified sparse representation classification, Pattern Recognit., 48, 1947, 10.1016/j.patcog.2014.12.013 Zitnick, 2014, Edge boxes: Locating object proposals from edges, 391