Germanium-doped optical fiber for real-time radiation dosimetry

Radiation Physics and Chemistry - Tập 116 - Trang 170-175 - 2015
A.K.M. Mizanur Rahman1,2, H.T. Zubair1, Mahfuza Begum1,2, H.A. Abdul-Rashid1, Z. Yusoff1, N.M. Ung3, K.A. Mat-Sharif1, W.S. Wan Abdullah4, Ghafour Amouzad Mahdiraji5, Y.M. Amin6, M.J. Maah7, D.A. Bradley8
1Fiber Optics Research Center, Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia
2Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
3Clinical Oncology Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Malaysia Nuclear Agency, Bangi, Kajang, Malaysia
5Photonics Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Malaysia
6Department of Physics, Faculty of Science, University of Malaya, Malaysia
7Department of Chemistry, Faculty of Science, University of Malaya, Malaysia
8Department of Physics, University of Surrey, Guildford, Surrey GU2 7HX, UK

Tài liệu tham khảo

Andersen, 2011, Fiber-coupled luminescence dosimetry in therapeutic and diagnostic radiology, Concepts Trends Med. Radiat. Dosim., 1345, 100 Aznar, 2004, Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams, Phys. Med. Biol., 49, 1655, 10.1088/0031-9155/49/9/005 Barthe, 2001, Electronic dosimeters based on solid state detectors, Nucl. Instrum. Methods B, 184, 158, 10.1016/S0168-583X(01)00711-X Blanc, 1997 Boer, 1993, Optical filtering and spectral measurements of radiation-induced light in plastic scintillation dosimetry, Phys. Med. Biol., 38, 945, 10.1088/0031-9155/38/7/005 Braunlich, P., et al., 1967. A simple model for thermoluminescence and thermally stimulated conductivity of inorganic photoconducting phosphors and experiments pertaining to infrared-stimulated luminescence. In: Proceedings of the 1st International Conference on Luminescence Dosimetry. pp. 57–73. Erfurt, 2000, Radioluminescence (RL) behaviour of Al2O3: C-potential for dosimetric applications, Radiat. Meas., 32, 735, 10.1016/S1350-4487(00)00052-4 Espinosa, 2008, Optically stimulated luminesce response of commercial SiO2 optical fiber, J. Radioanal. Nucl. Chem., 277, 125, 10.1007/s10967-008-0719-2 Hashim, 2013, Effective atomic number of Ge-doped and Al-doped optical fibers for radiation dosimetry purposes, IEEE Trans. Nucl. Sci., 60, 555, 10.1109/TNS.2012.2226912 Jahn, 2013, The BeOmax system – dosimetry using OSL of BeO for several applications, Radiat. Meas., 56, 324, 10.1016/j.radmeas.2013.01.069 Kalnis, 2012, Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres, Opt. Mater. Express, 2, 62, 10.1364/OME.2.000062 Khan Faiz, 1994 Le Masson, 2001, Optically stimulated luminescence in KMgF3:Ce3+ comparison of dosimetric characteristics with Al2O3:C, IEEE Trans. Nucl. Sci., 48, 1143, 10.1109/23.958739 Marckmann, 2006, Influence of the stem effect on radioluminescence signals from optical fibre Al2O3:C dosemeters, Radiat. Prot. Dosim., 119, 363, 10.1093/rpd/nci507 McKeever, 2003, Topics under debate-on the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry, Radiat. Prot. Dosim., 104, 263, 10.1093/oxfordjournals.rpd.a006191 Pagonis, 2009, Radioluminescence in Al2O3: C – analytical and numerical simulation results, J. Phys. D: Appl. Phys., 42, 175107, 10.1088/0022-3727/42/17/175107 Rao, 1984, Optically stimulated luminescence, Radiat. Prot. Dosim., 6, 64, 10.1093/rpd/6.1-4.64 Sanborn, E.N., Beard, E.L., 1967. Sulfides of Strontium, Calcium, and Magnesium in infrared-stimulation luminescence. In: Proceeding of the 1st International Conference on Luminescence Dosimetry. pp 183–191. Yukihara, 2014, State of art: optically stimulated luminescence dosimetry – frontiers of future research, Radiat. Meas., 1