Geostatistical mapping of topsoil organic carbon and uncertainty assessment in Western Paris croplands (France)

Geoderma Regional - Tập 10 - Trang 126-137 - 2017
M. Zaouche1, L. Bel1, E. Vaudour2
1UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
2UMR ECOSYS, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France

Tài liệu tham khảo

Adhikari, 2015, Digital mapping of topsoil carbon content and changes in the driftless area of Wisconsin, USA, Soil Sci. Soc. Am. J., 79, 155, 10.2136/sssaj2014.09.0392 Angers, 2011, Estimating and mapping the carbon saturation deficit of French agricultural topsoils, Soil Use Manag., 27, 448, 10.1111/j.1475-2743.2011.00366.x Arrouays, 2014, GlobalSoilMap: toward a fine-resolution global grid of soil properties, Adv. Agron., 125, 93, 10.1016/B978-0-12-800137-0.00003-0 Beven, 1979, A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43, 10.1080/02626667909491834 Bonfatti, 2016, Digital mapping of soil carbon in a viticultural region of southern Brazil, Geoderma, 261, 204, 10.1016/j.geoderma.2015.07.016 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Chiles, 2009, vol. 497 Ciais, 2010, The European carbon balance. Part 2: croplands, Glob. Chang. Biol., 16, 1409, 10.1111/j.1365-2486.2009.02055.x Conforti, 2015, Laboratory-based Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content, Catena, 124, 60, 10.1016/j.catena.2014.09.004 Crahet, 1992 Cressie, 1993, Statistics for spatial data, 10.1002/9781119115151 De Brogniez, 2015, A map of the topsoil organic carbon content of Europe generated by a generalized additive model, Eur. J. Soil Sci., 66, 121, 10.1111/ejss.12193 Deutsch, 1992 Deutsch, 2002, FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems, Comput. Geosci., 28, 525, 10.1016/S0098-3004(01)00075-9 Dignac, 2017, Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14, 10.1007/s13593-017-0421-2 Doetterl, 2013, Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches, Geoderma, 204, 31, 10.1016/j.geoderma.2013.04.007 Goidts, 2009, Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales, Eur. J. Soil Sci., 60, 723, 10.1111/j.1365-2389.2009.01157.x Gomez, 2012, Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data, Geoderma, 189-190, 176, 10.1016/j.geoderma.2012.05.023 Goovaerts, 1997 Grimm, 2008, Soil organic carbon concentrations and stocks on Barro Colorado Island. Digital soil mapping using Random Forests analysis, Geoderma, 146, 102, 10.1016/j.geoderma.2008.05.008 Hamiache, 2012, Spatial stochastic modeling of topsoil organic carbon content over a cultivated peri-urban region, using soil properties, soil types and a digital elevation model, Digit. Soil Assess. Beyond, 161, 10.1201/b12728-33 Hengl, 2004, A generic framework for spatial prediction of soil variables based on regression-kriging, Geoderma, 120, 75, 10.1016/j.geoderma.2003.08.018 Hengl, 2017, SoilGrids250m: global gridded soil information based on machine learning, PLoS ONE, 12, 10.1371/journal.pone.0169748 Houot, 2016, Recyclage de déchets organiques en agriculture, 200 Kempen, 2010, Pedometric mapping of soil organic matter using a soil map with quantified uncertainty, Eur. J. Soil Sci., 61, 333, 10.1111/j.1365-2389.2010.01232.x Kim, 2016, Assessment of carbon stocks in the topsoil using random forest and remote sensing images, J. Environ. Qual., 45, 1910, 10.2134/jeq2016.03.0076 Lacoste, 2014, High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape, Geoderma, 213, 296, 10.1016/j.geoderma.2013.07.002 Lantuéjoul, 2002 Li, 2010, Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?, Geoderma, 159, 63, 10.1016/j.geoderma.2010.06.017 Liaw, 2002, Classification and regression by randomForest, R News, 2, 18 Malone, 2009, Mapping continuous depth functions of soil carbon storage and available water capacity, Geoderma, 154, 138, 10.1016/j.geoderma.2009.10.007 Malone, 2011, Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes, Geoderma, 160, 614, 10.1016/j.geoderma.2010.11.013 Malone, 2017, Some methods for the quantification of prediction uncertainties for digital soil mapping, 169 Marchetti, 2010, Estimating soil organic matter content by regression kriging, 241 McBratney, 2003, On digital soil mapping, Geoderma, 117, 3, 10.1016/S0016-7061(03)00223-4 Meersmans, 2008, A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium), Geoderma, 143, 1, 10.1016/j.geoderma.2007.08.025 Mehra, 1960, Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, 317 Mérot, 1995, Mapping waterlogging of soils using digital terrain models, Hydrocarb. Process., 9, 27, 10.1002/hyp.3360090104 Minasny, 2006, A conditioned Latin hypercube method for sampling in the presence of ancillary information, Comput. Geosci., 32, 1378, 10.1016/j.cageo.2005.12.009 Minasny, 2013, Digital mapping of soil carbon, 1, 10.1016/B978-0-12-405942-9.00001-3 Moore, 1993, Soil attribute prediction using terrain analysis, Soil Sci. Soc. Am. J., 57, 443, 10.2136/sssaj1993.03615995005700020026x Noirot-Cosson, 2016 Noirot-Cosson, 2014, Scenarios of organic amendment use to increase soil carbon stocks and nitrogen availability in cropped soils at the territory scale: spatial and temporal simulations with the NCSOIL/CERES-EGC crop model Noirot-Cosson, 2016, Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland, Soil Biol. Biochem., 94, 138, 10.1016/j.soilbio.2015.11.014 Noirot-Cosson, 2017, Parameterisation of the NCSOIL model to simulate C and N short-term mineralisation of exogenous organic matter in different soils, Soil Biol. Biochem., 14, 128, 10.1016/j.soilbio.2016.10.015 Orton, 2012, Spatial prediction of soil organic carbon from data on large and variable spatial supports. I Inventory and mapping, Environmetrics, 23, 129, 10.1002/env.2136 Orton, 2012, Spatial prediction of soil organic carbon from data on large and variable spatial supports. II Mapping temporal change, Environmetrics, 23, 148, 10.1002/env.2134 Pei, 2010, Mapping soil organic matter using the topographic wetness index: a comparative study based on different flow-direction algorithms and kriging methods, Ecol. Indic., 10, 610, 10.1016/j.ecolind.2009.10.005 Peng, 2015, Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra, PLOS-One, 10, 10.1371/journal.pone.0142295 Poggio, 2015, Modelling uncertainty of carbon stocks changes in peats, vol. 17, 14147 Poggio, 2016, Bayesian spatial modelling of soil properties and their uncertainty: the example of soil organic matter in Scotland using R-INLA, Geoderma, 277, 69, 10.1016/j.geoderma.2016.04.026 Renard, 2014 Roudier, 2015 Samuel-Rosa, 2015, Do more detailed environmental covariates deliver more accurate soil maps?, Geoderma, 243–244, 214, 10.1016/j.geoderma.2014.12.017 Selige, 2006, High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures, Geoderma, 136, 235, 10.1016/j.geoderma.2006.03.050 Simbahan, 2006, Fine-resolution mapping of soil organic carbon based on multivariate secondary data, Geoderma, 132, 471, 10.1016/j.geoderma.2005.07.001 Somarathna, 2015, Mapping soil organic carbon content over New South Wales, Australia using local regression kriging, Geoderma Reg., 7, 38, 10.1016/j.geodrs.2015.12.002 Somaratne, 2005, Prediction of soil organic carbon across different land-use patterns, Soil Sci. Soc. Am. J., 69, 1580, 10.2136/sssaj2003.0293 Stevens, 2010, Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy, Geoderma, 158, 32, 10.1016/j.geoderma.2009.11.032 Stevens, 2012, Soil organic carbon predictions by airborne imaging spectroscopy: comparing cross-validation and validation, Soil Sci. Soc. Am. J., 76, 2174, 10.2136/sssaj2012.0054 Vaudour, 2013, Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands, Soil Sci. Soc. Am. J., 77, 2122, 10.2136/sssaj2013.02.0062 Vaudour, 2014, Mapping tillage operations over a peri-urban region using combined SPOT4 and ASAR/ENVISAT images, Int. J. Appl. Earth Obs. Geoinf., 28, 43, 10.1016/j.jag.2013.11.005 Vaudour, 2015, Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images, Int. J. Appl. Earth Obs. Geoinf., 42, 128, 10.1016/j.jag.2015.06.003 Vaudour, 2016, Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra, Int. J. Appl. Earth Obs. Geoinf., 49, 24, 10.1016/j.jag.2016.01.005 Vaysse, 2017, Using quantile regression forest to estimate uncertainty of digital soil mapping products, Geoderma, 291, 55, 10.1016/j.geoderma.2016.12.017 Wackernagel, 1995 Walker, 2016, Combining measured sites, soilscapes map and soil sensing for mapping soil properties of a region, Geoderma, 300, 64, 10.1016/j.geoderma.2016.12.011 World Reference Base (WRB), 2014, World reference base for soil resources Wu, 2009, Spatial prediction of soil organic matter content using cokriking with remotely sensed data, Soil Sci. Soc. Am. J., 73, 1202, 10.2136/sssaj2008.0045 Xiong, 2015, Assessing uncertainty in soil organic carbon modeling across a highly heterogeneous landscape, Geoderma, 251-252, 105, 10.1016/j.geoderma.2015.03.028 Zhang, 2012, Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information, Geoderma, 171–172, 35, 10.1016/j.geoderma.2011.07.012 Zhao, 2010, Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes, Can. J. Soil Sci., 90, 75, 10.4141/CJSS08057