Geostatistical mapping of topsoil organic carbon and uncertainty assessment in Western Paris croplands (France)
Tài liệu tham khảo
Adhikari, 2015, Digital mapping of topsoil carbon content and changes in the driftless area of Wisconsin, USA, Soil Sci. Soc. Am. J., 79, 155, 10.2136/sssaj2014.09.0392
Angers, 2011, Estimating and mapping the carbon saturation deficit of French agricultural topsoils, Soil Use Manag., 27, 448, 10.1111/j.1475-2743.2011.00366.x
Arrouays, 2014, GlobalSoilMap: toward a fine-resolution global grid of soil properties, Adv. Agron., 125, 93, 10.1016/B978-0-12-800137-0.00003-0
Beven, 1979, A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43, 10.1080/02626667909491834
Bonfatti, 2016, Digital mapping of soil carbon in a viticultural region of southern Brazil, Geoderma, 261, 204, 10.1016/j.geoderma.2015.07.016
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Chiles, 2009, vol. 497
Ciais, 2010, The European carbon balance. Part 2: croplands, Glob. Chang. Biol., 16, 1409, 10.1111/j.1365-2486.2009.02055.x
Conforti, 2015, Laboratory-based Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content, Catena, 124, 60, 10.1016/j.catena.2014.09.004
Crahet, 1992
Cressie, 1993, Statistics for spatial data, 10.1002/9781119115151
De Brogniez, 2015, A map of the topsoil organic carbon content of Europe generated by a generalized additive model, Eur. J. Soil Sci., 66, 121, 10.1111/ejss.12193
Deutsch, 1992
Deutsch, 2002, FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems, Comput. Geosci., 28, 525, 10.1016/S0098-3004(01)00075-9
Dignac, 2017, Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review, Agron. Sustain. Dev., 37, 14, 10.1007/s13593-017-0421-2
Doetterl, 2013, Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches, Geoderma, 204, 31, 10.1016/j.geoderma.2013.04.007
Goidts, 2009, Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales, Eur. J. Soil Sci., 60, 723, 10.1111/j.1365-2389.2009.01157.x
Gomez, 2012, Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data, Geoderma, 189-190, 176, 10.1016/j.geoderma.2012.05.023
Goovaerts, 1997
Grimm, 2008, Soil organic carbon concentrations and stocks on Barro Colorado Island. Digital soil mapping using Random Forests analysis, Geoderma, 146, 102, 10.1016/j.geoderma.2008.05.008
Hamiache, 2012, Spatial stochastic modeling of topsoil organic carbon content over a cultivated peri-urban region, using soil properties, soil types and a digital elevation model, Digit. Soil Assess. Beyond, 161, 10.1201/b12728-33
Hengl, 2004, A generic framework for spatial prediction of soil variables based on regression-kriging, Geoderma, 120, 75, 10.1016/j.geoderma.2003.08.018
Hengl, 2017, SoilGrids250m: global gridded soil information based on machine learning, PLoS ONE, 12, 10.1371/journal.pone.0169748
Houot, 2016, Recyclage de déchets organiques en agriculture, 200
Kempen, 2010, Pedometric mapping of soil organic matter using a soil map with quantified uncertainty, Eur. J. Soil Sci., 61, 333, 10.1111/j.1365-2389.2010.01232.x
Kim, 2016, Assessment of carbon stocks in the topsoil using random forest and remote sensing images, J. Environ. Qual., 45, 1910, 10.2134/jeq2016.03.0076
Lacoste, 2014, High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape, Geoderma, 213, 296, 10.1016/j.geoderma.2013.07.002
Lantuéjoul, 2002
Li, 2010, Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information?, Geoderma, 159, 63, 10.1016/j.geoderma.2010.06.017
Liaw, 2002, Classification and regression by randomForest, R News, 2, 18
Malone, 2009, Mapping continuous depth functions of soil carbon storage and available water capacity, Geoderma, 154, 138, 10.1016/j.geoderma.2009.10.007
Malone, 2011, Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes, Geoderma, 160, 614, 10.1016/j.geoderma.2010.11.013
Malone, 2017, Some methods for the quantification of prediction uncertainties for digital soil mapping, 169
Marchetti, 2010, Estimating soil organic matter content by regression kriging, 241
McBratney, 2003, On digital soil mapping, Geoderma, 117, 3, 10.1016/S0016-7061(03)00223-4
Meersmans, 2008, A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium), Geoderma, 143, 1, 10.1016/j.geoderma.2007.08.025
Mehra, 1960, Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate, 317
Mérot, 1995, Mapping waterlogging of soils using digital terrain models, Hydrocarb. Process., 9, 27, 10.1002/hyp.3360090104
Minasny, 2006, A conditioned Latin hypercube method for sampling in the presence of ancillary information, Comput. Geosci., 32, 1378, 10.1016/j.cageo.2005.12.009
Minasny, 2013, Digital mapping of soil carbon, 1, 10.1016/B978-0-12-405942-9.00001-3
Moore, 1993, Soil attribute prediction using terrain analysis, Soil Sci. Soc. Am. J., 57, 443, 10.2136/sssaj1993.03615995005700020026x
Noirot-Cosson, 2016
Noirot-Cosson, 2014, Scenarios of organic amendment use to increase soil carbon stocks and nitrogen availability in cropped soils at the territory scale: spatial and temporal simulations with the NCSOIL/CERES-EGC crop model
Noirot-Cosson, 2016, Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland, Soil Biol. Biochem., 94, 138, 10.1016/j.soilbio.2015.11.014
Noirot-Cosson, 2017, Parameterisation of the NCSOIL model to simulate C and N short-term mineralisation of exogenous organic matter in different soils, Soil Biol. Biochem., 14, 128, 10.1016/j.soilbio.2016.10.015
Orton, 2012, Spatial prediction of soil organic carbon from data on large and variable spatial supports. I Inventory and mapping, Environmetrics, 23, 129, 10.1002/env.2136
Orton, 2012, Spatial prediction of soil organic carbon from data on large and variable spatial supports. II Mapping temporal change, Environmetrics, 23, 148, 10.1002/env.2134
Pei, 2010, Mapping soil organic matter using the topographic wetness index: a comparative study based on different flow-direction algorithms and kriging methods, Ecol. Indic., 10, 610, 10.1016/j.ecolind.2009.10.005
Peng, 2015, Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra, PLOS-One, 10, 10.1371/journal.pone.0142295
Poggio, 2015, Modelling uncertainty of carbon stocks changes in peats, vol. 17, 14147
Poggio, 2016, Bayesian spatial modelling of soil properties and their uncertainty: the example of soil organic matter in Scotland using R-INLA, Geoderma, 277, 69, 10.1016/j.geoderma.2016.04.026
Renard, 2014
Roudier, 2015
Samuel-Rosa, 2015, Do more detailed environmental covariates deliver more accurate soil maps?, Geoderma, 243–244, 214, 10.1016/j.geoderma.2014.12.017
Selige, 2006, High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures, Geoderma, 136, 235, 10.1016/j.geoderma.2006.03.050
Simbahan, 2006, Fine-resolution mapping of soil organic carbon based on multivariate secondary data, Geoderma, 132, 471, 10.1016/j.geoderma.2005.07.001
Somarathna, 2015, Mapping soil organic carbon content over New South Wales, Australia using local regression kriging, Geoderma Reg., 7, 38, 10.1016/j.geodrs.2015.12.002
Somaratne, 2005, Prediction of soil organic carbon across different land-use patterns, Soil Sci. Soc. Am. J., 69, 1580, 10.2136/sssaj2003.0293
Stevens, 2010, Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy, Geoderma, 158, 32, 10.1016/j.geoderma.2009.11.032
Stevens, 2012, Soil organic carbon predictions by airborne imaging spectroscopy: comparing cross-validation and validation, Soil Sci. Soc. Am. J., 76, 2174, 10.2136/sssaj2012.0054
Vaudour, 2013, Potential of SPOT multispectral satellite images for mapping topsoil organic carbon content over peri-urban croplands, Soil Sci. Soc. Am. J., 77, 2122, 10.2136/sssaj2013.02.0062
Vaudour, 2014, Mapping tillage operations over a peri-urban region using combined SPOT4 and ASAR/ENVISAT images, Int. J. Appl. Earth Obs. Geoinf., 28, 43, 10.1016/j.jag.2013.11.005
Vaudour, 2015, Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images, Int. J. Appl. Earth Obs. Geoinf., 42, 128, 10.1016/j.jag.2015.06.003
Vaudour, 2016, Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra, Int. J. Appl. Earth Obs. Geoinf., 49, 24, 10.1016/j.jag.2016.01.005
Vaysse, 2017, Using quantile regression forest to estimate uncertainty of digital soil mapping products, Geoderma, 291, 55, 10.1016/j.geoderma.2016.12.017
Wackernagel, 1995
Walker, 2016, Combining measured sites, soilscapes map and soil sensing for mapping soil properties of a region, Geoderma, 300, 64, 10.1016/j.geoderma.2016.12.011
World Reference Base (WRB), 2014, World reference base for soil resources
Wu, 2009, Spatial prediction of soil organic matter content using cokriking with remotely sensed data, Soil Sci. Soc. Am. J., 73, 1202, 10.2136/sssaj2008.0045
Xiong, 2015, Assessing uncertainty in soil organic carbon modeling across a highly heterogeneous landscape, Geoderma, 251-252, 105, 10.1016/j.geoderma.2015.03.028
Zhang, 2012, Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information, Geoderma, 171–172, 35, 10.1016/j.geoderma.2011.07.012
Zhao, 2010, Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes, Can. J. Soil Sci., 90, 75, 10.4141/CJSS08057