Geostatistical interpolation based ternary diagrams for estimating water retention properties in soils in the Center-South regions of Brazil
Tài liệu tham khảo
Abdelbaki, 2018, Evaluation of pedotransfer functions for predicting soil bulk density for U.S soils, Ain Shams Eng. J., 9, 1611, 10.1016/j.asej.2016.12.002
Akpa, 2014, Digital mapping of soil particle size fractions for Nigeria, Soil Sci. Soc. Am. J., 78, 1953, 10.2136/sssaj2014.05.0202
Al Majou, 2008, Prediction of soil water retention properties after stratification by combining texture, bulk density and the type of horizon, Soil Use Manag., 24, 383, 10.1111/j.1475-2743.2008.00180.x
Arruda, 1987, Parâmetros de solo para o cálculo da água disponível com base na textura do solo, Rev. Bras. Ciãancia Do Solo, 11, 11
Bodner, 2013, Environmental and management influences on temporal variability of near saturated soil hydraulic properties, Geoderma, 204-205, 120, 10.1016/j.geoderma.2013.04.015
Bolton, 1987, A simple trigonometric method for extracting data from ternary diagrams, J. Sediment. Petrol., 57, 773, 10.1306/212F8C2E-2B24-11D7-8648000102C1865D
Botula, 2012, Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (D.R. Congo), Agric. Water Manag., 111, 1, 10.1016/j.agwat.2012.04.006
Botula, 2014, Pedotransfer functions to predict water retention for soils of the humid tropics: a review, Rev. Bras. Ciãancia Do Solo, 38, 679, 10.1590/S0100-06832014000300001
Bouma, 1989, Using soil survey data for quantitative land evaluation, Advances in Soil Science, 9, 177, 10.1007/978-1-4612-3532-3_4
Bruand, 2003, Use of class pedotransfer functions based on texture and bulk density of clods to generate water retention curves, Soil Use Manag., 19, 232, 10.1111/j.1475-2743.2003.tb00309.x
Cambardella, 1994, Field-scale variability of soil properties in Central Iowa Soils, Soil Sci. Soc. Am. J., 58, 1501, 10.2136/sssaj1994.03615995005800050033x
Delbari, 2011, Geostatistical analysis of soil texture fractions on the field scale, Soil Water Res., 6, 173, 10.17221/9/2010-SWR
Dobarco, 2019, Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty, Geoderma, 336, 81, 10.1016/j.geoderma.2018.08.022
Duan, 2020, Large-scale spatial variability of eight soil chemical properties within paddy fields, Catena, 188, 10.1016/j.catena.2019.104350
Eldeiry, 2010, Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images, J. Irrig. Drain. Eng., 136, 355, 10.1061/(ASCE)IR.1943-4774.0000208
GOLDEN SOFTWARE, 1995
Grashey-Jansen, 2014, Optimizing irrigation efficiency through the consideration of soil hydrological properties: examples and simulation approaches, Erdkunde, 68, 33, 10.3112/erdkunde.2014.01.04
Grossman, 2002, Bulk density and linear extensibility, 201
Guan, 2017, Spatial variability of soil nitrogen, phosphorus and potassium contents in Moso bamboo forests in Yong’an City, China, Catena, 150, 161, 10.1016/j.catena.2016.11.017
Gubiani, 2006, Método alternativo para a determinação da densidade de partículas do solo – exatidão, precisão e tempo de processamento, Ciência Rural, 36, 664, 10.1590/S0103-84782006000200049
Gunarathna, 2019, Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils, Soil Tillage Res., 190, 109, 10.1016/j.still.2019.02.009
Horne, 2016, The available water holding capacity of soils under pasture, Agric. Water Manag., 177, 165, 10.1016/j.agwat.2016.07.012
Isaaks, 1989
Knotters, 1995, A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations, Geoderma, 67, 227, 10.1016/0016-7061(95)00011-C
Liao, 2013, Spatial estimation of surface soil texture using remote sensing data, Soil Sci. Plant Nutr., 59, 488, 10.1080/00380768.2013.802643
Liu, 2018, Biophysical effect of conversion from croplands to grasslands in water-limited temperate regions of China, Sci. Total Environ., 648, 315, 10.1016/j.scitotenv.2018.08.128
Mcneill, 2018, Pedotransfer functions for the soil water characteristics of New Zealand soils using S-map information, Geoderma, 326, 96, 10.1016/j.geoderma.2018.04.011
Merdun, 2006, Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity, Soil Tillage Res., 90, 108, 10.1016/j.still.2005.08.011
Nguyen, 2015, Evaluation of soil water retention pedotransfer functions for Vietnamese Mekong Delta soils, Agric. Water Manag., 158, 126, 10.1016/j.agwat.2015.04.011
Oliveira, 2002, Funções de pedotransferência para predição da umidade retida a potenciais específicos em solos do estado de Pernambuco, Rev. Bras. Ciãancia Do Solo, 26, 35
Patil, 2016, Pedotransfer functions for estimating soil hydraulic properties: a review, Pedosphere, 26, 417, 10.1016/S1002-0160(15)60054-6
Pham, 2019, Analysis of neural network based pedotransfer function for predicting soil water characteristic curve, Geoderma, 351, 92, 10.1016/j.geoderma.2019.05.013
Ramos, 2014, Development of ternary diagrams for estimating water retention properties using geostatistical approaches, Geoderma, 230-231, 229, 10.1016/j.geoderma.2014.04.017
Robertson, 1998, Geostatistics for the environmental sciences. Version 5.03 Beta
Rosa, 2012, Implementing the dual crop coefficient approach in interactive software: 1. Background and computational strategy, Agric. Water Manag., 103, 8, 10.1016/j.agwat.2011.10.013
Saxton, 2006, The SPAW model for agricultural field and pond hydrologic simulation, 401
Saxton, 1986, Estimating generalized soil water characteristics from texture, Soil Sci. Soc. Am. J., 50, 1031, 10.2136/sssaj1986.03615995005000040039x
Shahriari, 2019, Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran, Catena, 182, 104149, 10.1016/j.catena.2019.104149
Smith, 1993, Using multiple-variable indicator kriging for evaluating soil quality, Soil Sci. Soc. Am. J., 57, 743, 10.2136/sssaj1993.03615995005700030020x
Steduto, 2009, AquaCrop - AquaCrop - The FAO crop model to simulate yield response to water. I. Concepts and underlying principles, Agron. J., 101, 426, 10.2134/agronj2008.0139s
Tomasella, 1998, Estimating soil water retention characteristics from limited data in Brazilian Amazonia, Soil Sci., 163, 190, 10.1097/00010694-199803000-00003
Trangmar, 1985, Applications of geostatistics to spatial studies of soil properties, Adv. Agronomy, 38, 45, 10.1016/S0065-2113(08)60673-2
Twarakavi, 2009, Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines, Soil Sci. Soc. Am. J., 73, 1443, 10.2136/sssaj2008.0021
Vettori, 1968
Webster, 2001
Webster, 2002, 330
Wheeler, 2003, OVERSEER nutrient budgets: moving towards on-farm resource accounting, NZ Grassland Association, 65, 191, 10.33584/jnzg.2003.65.2484
Wösten, 2001, Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics, J. Hydrol. (Amst), 251, 123, 10.1016/S0022-1694(01)00464-4
Zhang, 2017, Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3), J. Hydrol. (Amst), 547, 39, 10.1016/j.jhydrol.2017.01.004