Geostationary Enhanced Temporal Interpolation for CERES Flux Products

Journal of Atmospheric and Oceanic Technology - Tập 30 Số 6 - Trang 1072-1090 - 2013
David R. Doelling1, Norman G. Loeb1, D. F. Keyes2, Michele L. Nordeen2, Daniel Morstad2, Cathy Nguyen2, Bruce A. Wielicki1, David F. Young1, Moguo Sun2
1NASA Langley Research Center, Hampton, Virginia
2SSAI, Hampton, Virginia

Tóm tắt

Abstract The Clouds and the Earth’s Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth’s top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1° latitude × 1° longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m−2 over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.

Từ khóa


Tài liệu tham khảo

Doelling, 2012, Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data, Geosci. Remote Sens. Lett, 9, 119, 10.1109/LGRS.2011.2161751

Harries, 2005, The Geostationary Earth Radiation Budget Project, Bull. Amer. Meteor. Soc., 86, 945, 10.1175/BAMS-86-7-945

Kato, 2003, Twilight irradiance reflected by the earth estimated from Clouds and the Earth’s Radiant Energy System (CERES) measurements, J. Climate, 16, 2646, 10.1175/1520-0442(2003)016<2646:TIRBTE>2.0.CO;2

Kato, 2005, Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra, J. Geophys. Res., 110, D07202, 10.1029/2004JD005308

Keyes, 2006

Lazzara, 1999, The Man Computer Interactive Data Access System: 25 years of interactive processing, Bull. Amer. Meteor. Soc., 80, 271, 10.1175/1520-0477(1999)080<0271:TMCIDA>2.0.CO;2

Loeb, 2001, Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System (CERES) instrument, J. Appl. Meteor., 40, 822, 10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2

Loeb, 2003, Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology, J. Appl. Meteor., 42, 240, 10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2

Loeb, 2005, Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology, J. Atmos. Oceanic Technol., 22, 338, 10.1175/JTECH1712.1

Loeb, 2007, Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation, J. Atmos. Oceanic Technol., 24, 564, 10.1175/JTECH1983.1

Loeb, 2009, Toward optimal closure of the earth’s top-of-atmosphere radiation budget, J. Climate, 22, 748, 10.1175/2008JCLI2637.1

Loeb, 2012, Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nat. Geosci., 5, 10.1038/ngeo1375

Minnis, 1994

Minnis, 2002, Rapid calibration of operational and research meteorological satellite imagers. Part I: Evaluation of research satellite visible channels as references, J. Atmos. Oceanic Technol., 19, 1233, 10.1175/1520-0426(2002)019<1233:RCOOAR>2.0.CO;2

Minnis, 2002, Rapid calibration of operational and research meteorological satellite imagers. Part II: Comparison of infrared channels, J. Atmos. Oceanic Technol., 19, 1250, 10.1175/1520-0426(2002)019<1250:RCOOAR>2.0.CO;2

Minnis, 2008, Assessment of the visible channel calibrations of the TRMM VIRS and MODIS on Aqua and Terra, J. Atmos. Oceanic Technol., 25, 385, 10.1175/2007JTECHA1021.1

Minnis, 2011, CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 4374, 10.1109/TGRS.2011.2144601

Morstad, 2011

National Research Council, 2007

Puschell, 2003

Schmit, 2005, Introducing the next-generation Advanced Baseline Imager on GOES-R, Bull. Amer. Meteor. Soc., 86, 1079, 10.1175/BAMS-86-8-1079

Stamnes, 1988, 27, 2502

Suarez, 2005

Sun, 2006, Geophys. Res. Lett., 33, L23810, 10.1029/2006GL027958

Thompson, 1982, Parameterization of outgoing infrared radiation derived from detailed radiative calculations, J. Atmos. Sci., 39, 2667, 10.1175/1520-0469(1982)039<2667:POOIRD>2.0.CO;2

Viollier, 2004, Combination of ScaRaB-2 and CERES with Meteosat-5 to remove time sampling bias and improve radiation budget estimations in the INDOEX region, J. Geophys. Res., 109, D05105, 10.1029/2003JD003947

Weinreb, 1997, Operational calibration of Geostationary Operational Environmental Satellite-8 and -9 imagers and sounders, Appl. Opt., 36, 6895, 10.1364/AO.36.006895

Wielicki, 1996, Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment, Bull. Amer. Meteor. Soc., 77, 853, 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2

Wu, 2013, Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR spectral band calibration stability, IEEE Trans. Geosci. Remote Sens., 10.1109/TGRS.2012.2226588

Xiong, 2005

Young, 1998, Temporal interpolation methods for the Clouds and the Earth’s Radiant Energy System (CERES) experiment, J. Appl. Meteor., 37, 572, 10.1175/1520-0450(1998)037<0572:TIMFTC>2.0.CO;2