Geospatial analysis of pollen records from the Yucatán peninsula, Mexico
Tóm tắt
Changes in distribution of semi-evergreen forest in the Yucatán peninsula and variation of precipitation during the late Holocene were inferred using a geographical information system. Deterministic methods for spatial interpolation using fossil pollen data from seven cores elucidated environmental changes. The changes in the distribution of the semi-evergreen forest allowed to us infer variations in precipitation in the area and to distinguish whether changes of forest cover are a consequence of climate and/or of human activities. The reconstruction of the Preclassic period (at 550 and 50 b.c.) indicates higher precipitation than at present and suggests a more closed vegetation cover. Around a.d. 450 the vegetation acquired an open character indicating a reduction in precipitation. During this time the decrease in forest was not homogeneous in the Yucatán peninsula, indicating human impacts in certain areas. A reduction in forest cover but not a complete deforestation of the region is assessed during the Classic period (a.d. 450). The reconstruction of a.d. 950 shows the recovery of the forest and is related to the Medieval warm period. Geographical information systems are useful tools to reconstruct the spatial history of the vegetation of the Yucatán peninsula during the late Holocene.
Tài liệu tham khảo
Abrams EM, Rue DJ (1998) The causes and consequences of deforestation among the prehistoric Maya. Human Ecol 16:377–395
Anselmetti FS, Ariztegui D, Brenner M, Hodell DA, Rosenmeier MF (2007) Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35:915–918
Beach T, Dunning N, Luzzadder-Beach S, Cook D, Lohs J (2006) Impacts of the ancient Maya on soil erosion rates in the central Maya lowlands. Catena 65:166–178
Bernabo JC, Webb T (1977) Changing patterns in the Holocene pollen record of northeastern North America: a mapped summary. Quat Res 8:64–96
Birks HJB (1989) Holocene isochrone maps and patterns of tree-spreading in the British Isles. J Biogeogr 16:503–540
Brenner M, Hodell DA, Curtis JH, Rosenmeier M, Abbott MB (2001) Abrupt climate change and Pre-Columbian cultural collapse. In: Markgraf V (ed) Interhemispheric climatic linkages. Academic Press, San Diego, pp 87–103
Brubaker LB, Anderson PM, Edwards ME, Lozhkin AV (2005) Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. J Biogeogr 32:833–848
Carozza JD, Galop D, Metailie JP, Vanniere B, Bossuet F, Monna JA, Lopez-Saez MC, Arnauld V, Breuil M, Forne M, Lemonnier E (2007) Landuse and soil degradation in the southern Maya lowlands from Pre-Classic to Post-Classic times: the case of La Joyanca (Peten, Guatemala). Geo Acta 20:195–2007
Carrillo-Bastos A, Islebe GA, Torrescano-Valle N, González NE (2010) Holocene vegetation and climate history of central Quintana Roo, Yucatán Península, Mexico. Rev Palaeobot Palynol 160:189–196
Coe MD (1993) The Maya. Thames and Hudson, London
Correa-Metrio A, Bush MB, Pérez L, Schwalb A, Cabrera KR (2011) Pollen distribution along climatic and biogeographic gradients in northern Central America. Holocene 21:687–698
Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatán Península (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat Res 46:37–47
Dunning NP, Luzzadder-Beach S, Beach T, Jones JG, Scarborough V, Culbert TP (2002) Arising from the Bajos: the evolution of a Neotropical landscape and the rise of Maya civilization. Ann Assoc Am Geogr 92:267–283
Duran R, Olmsted I (1999) Vegetación de la península de Yucatán. In: Córdoba J (ed) García de Fuentes A. Atlas de procesos territoriales de Yucatán. UADY, Mérida, pp 163–182
ESRI (2001) Using ArcGis geostatistical analyst. ESRI, Redlands
Flantua S, Van Boxel J, Hooghiemstra H, Van Smaalen J (2007) Application of GIS and logistic regression to fossil pollen data in modelling present and past spatial distribution of the Colombian savanna. Clim Dyn 29:697–712
Folan WJ (1983) Summary and conclusions. In: Folan WJ, Kintz ER, Fletcher LA (eds) Cobá, a classic Maya metropolis. Academic Press, New York, pp 211–217
Gaudin L, Marguerie D, Lanos P (2008) Correlation between spatial distributions of pollen data, archaeological records and physical parameters from north-western France: a GIS and numerical analysis approach. Veget Hist Archaeobot 17:585–595
Giesecke T, Bennett KD (2004) The Holocene spread of Picea abies (L.) Karst in Fennoscandia and adjacent areas. J Biogeogr 31:1,523–1,548
Hastenrath S (1976) Variations in low-latitude circulation an extreme climatic events in the Tropical Americas. J Atmos Sci 33:202–215
Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the holocene. Science 293:1,304–1,308
Haug GH, Gunther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1,731–1,735
Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of classic Maya civilization. Nature 375:391–394
Hodell DA, Brenner M, Curtis JH (2005a) Climate change on the Yucatán Península during the Little Ice Age. Quat Res 63:109–121
Hodell DA, Brenner M, Curtis JH (2005b) Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat Sci Rev 24:1,413–1,427
Hodell DA, Brenner M, Curtis JH (2007) Climate and cultural history of the Northeastern Yucatan Península, Quintana Roo, Mexico. Clim Chang 83:215–240
Islebe GA, Sánchez-Sánchez O (2002) History of late holocene vegetation at Quintana Roo, Caribbean coast of Mexico. Plant Ecol 160:187–192
Islebe GA, Hooghiemstra H, Brenner M, Curtis JH, Hodell DA (1996) A holocene vegetation history from lowland Guatemala. Holocene 6:265–271
Islebe GA, Villanueva-Gutierrez R, Sánchez-Sánchez O (2001) Relación lluvia de polen-vegetación en selvas de Quintana Roo. Bol Soc Bot México 69:31–38
Lenz O, Riegel W (2001) Isopollen maps as a tool for the reconstruction of a coastal swamp from the Middle Eocene at Helmstedt (Northern Germany). Facies 45:177–194
Leyden BW (2002) Pollen evidence for climatic variability and cultural disturbance in the Maya lowlands. Anc Mesoam 13:85–101
Leyden BW, Brenner M, Hodell DA, Curtis JH (1993) Late Pleistocene climate in the Central American lowlands. Geophys Mon Ser 78:165–178
Leyden BW, Brenner M, Whitmore T, Curtis JH, Piperno D, Dahlin BH (1996) A record of long- and short-term climatic variation from northwest Yucatán: Cenote San José Chulchacá. In: Fedick SL (ed) The managed mosaic: ancient Maya agriculture and resource use. University of Utah Press, Salt Lake City, pp 30–50
Leyden BW, Brenner M, Dahlin BH (1998) Cultural and climatic history of Cobá Lowland Maya city in Quintana Roo, Mexico. Quat Res 49:111–122
Medina-Elizalde M, Burns SJ, Lea DW, Asmerom Y, Von Gunten L, Polyak V, Vuille M, Karmalkar A (2010) Stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth Planet Sci Lett 298:255–262
Miranda F (1958) Estudios acerca de la vegetación. In: Beltran E (ed) Los recursos naturales del sureste y su aprovechamiento. Ediciones del Instituto Mexicano de Recursos Naturales Renovables, México, pp 215–271
Miranda F (1978) Vegetación de la Península de Yucatán: rasgos fisiográficos. Colegio de posgraduados, Chapingo
Mueller AD, Islebe GA, Anselmetti FS, Ariztegui D, Brenner M, Hodell DA, Hajdas I, Hamann Y, Haug GH, Kennett DJ (2010) Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38:523–526
Orellana LR, Balam K, Bañuelos RI, García de Miranda E, González-Iturbide AJ, Herrera CF, Vidal J (1999) Evaluación climática. In: Córdoba J (ed) García de Fuentes A. Atlas de procesos territoriales de Yucatán. UADY, Mérida, pp 163–182
Paez MM, Schäbitz F, Stutz S (2001) Modern pollen-vegetation and isopoll maps in southern Argentina. J Biogeogr 28:997–1021
Prentice C (1985) Pollen representation, source area and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–78
Ralska-Jasiewiczowa M (1983) Isopollen maps for Poland: 0–11000 years B.P. N Phytol 94:133–175
Sánchez-Sánchez O (1987) Estructura y composición de la selva mediana superennifolia presente en el Jardín Botánico del CIQRO, Puerto Morelos. Universidad Veracruzana, Xalapa
Sánchez-Sánchez O, Islebe GA (2002) Tropical forest communities in southeastern Mexico. Plant Ecol 158:183–200
Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244
Torrescano-Valle N (2007) Reconstrucción paleoambiental del Holoceno Medio-Tardío en la parte centro-sur de la península de Yucatán, México. Doctoral Thesis, El Colegio de la Frontera Sur
Torrescano-Valle N, Islebe G (2006) Tropical forest and mangrove history from southeastern Mexico: a 5000 yr pollen record and implications for sea level rise. Veget Hist Archaeobot 15:191–195
Turner BL II, Klepeis P, Schneider LC (2003) Three millennia in the southern Yucatán peninsular region: implications for occupancy, use and “carrying capacity”. In: Gómez-Pompa A, Allen M, Fedick SL, Jiménez-Osornio J (eds) The lowland Maya area: three millennia at the human-wildland interface. Halworth Press, New York, pp 361–387
Vidal-Zepeda R (2005) Las regiones climáticas de México. Instituto de Geografía, UNAM, Mexico
Wadsworth R, Treweek J (1999) Geographical information systems for ecology: an introduction. Longman, London
Wang LC, Wu JT, Lee TQ, Lee PF, Chen SH (2011) Climate changes inferred from integrated multi-site pollen data in northern Taiwan. J Asian Earth Sci 40:1,164–1,170