Geophysical constraints on microbial biomass in subseafloor sediments and coal seams down to 2.5 km off Shimokita Peninsula, Japan

Progress in Earth and Planetary Science - Tập 5 - Trang 1-17 - 2018
Wataru Tanikawa1,2, Osamu Tadai3, Yuki Morono1,2, Kai-Uwe Hinrichs4, Fumio Inagaki1,2,5
1Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
2Research and Development (R&D) Center for Submarine Resources, JAMSTEC, Yokosuka, Japan
3Marine Works Japan Ltd., Nankoku, Japan
4MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
5R&D Center for Ocean Drilling Science (ODS), JAMSTEC, Yokohama, Japan

Tóm tắt

To understand the ability of microbial life to inhabit a deep subseafloor coalbed sedimentary basin, the correlation between fluid transport properties and the abundance of microbial cells was investigated based on core samples collected down to about 2.5 km below the seafloor during the Integrated Ocean Drilling Program Expedition 337 off the Shimokita Peninsula, Japan. The overall depth profiles for porosity and permeability exhibited a decreasing trend with increasing depth. However, at depths greater than 1.2 km beneath the seafloor, the transport characteristics of the sediments were highly variable, with the permeability ranging from 10−16 to 10−22 m2 and the pore size ranging from < 0.01 to 100 μm. This is mainly attributed to the diversity of the lithology, which exhibits a range of pore sizes and pore geometries. Fracture channels in coal seams had the highest permeability, while shale deposits had the smallest pore size and lowest permeability. A positive correlation between permeability and pore size was confirmed by the Kozeny-Carman equation. Cell abundance at shallower depths was positively correlated with porosity and permeability, and was less strongly correlated with pore size. These findings suggest that one of the factors affecting the decrease in microbial cell abundance with increasing depth was a reduction in nutrient and water supply to indigenous microbial communities as a result of a decrease in porosity and permeability due to sediment compaction. Anomalous regions with relatively high cell concentrations in coal-bearing units could be explained by the higher permeability and larger pore size for these units compared to the surrounding sediments. Nutrient transport through permeable cleats in coal layers might occur upwards toward the upper permeable sandstone layers, which are well suited for sustaining sizable microbial populations. Conversely, impermeable shale and siltstone with small pores (< 0.2 μm, which is smaller than microbial cell size) may act as barriers to water and energy-yielding substrates for deep microbial life. We propose that the pore size and permeability govern the threshold for microbial habitability in the deep subseafloor sedimentary biosphere.

Tài liệu tham khảo

Abu-Ashour J, Joy DM, Lee H, Whiteley HR, Zelin S (1994) Transport of microorganisms through soil. Water Air Soil Pollut 75:141–158. https://doi.org/10.1007/BF01100406. Aoike K (ed.) (2007) CK06-06 D/V Chikyu shakedown cruise offshore Shimokita: Laboratory Operation Report. CHIKYU Cruise report. http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/CK06-06_902_all.pdf. Bernabe Y (1987) A wide range permeameter for use in rock physics. Int J Rock Mech Min Sci Geomech Abstr 24:309–315. https://doi.org/10.1016/0148-9062(87)90867-9. Beuchat LR (1974) Combined effects of water activity, solute, and temperature on the growth of Vibrio parahaemolyticus. Appl Microbiol 27:1075–1080. Braun S, Morono Y, Littmann S, Kuypers M, Aslan H, Dong M, Jørgensen BB, Lomstein BA (2016) Size and carbon content of sub-seafloor microbial cells at Landsort deep, Baltic Sea. Front Microbiol 7:1375. Bredehoeft JD, Hanshaw BB (1968) On the maintenance of anomalous fluid pressures: I. thick sedimentary sequences. GSA Bull 79:1097–1106. Carniglia SC (1986) Construction of the tortuosity factor from porosimetry. J Catal 102:401–418. https://doi.org/10.1016/0021-9517(86)90176-4. Clarkson CR, Bustin RM (1996) Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin. Fuel 75:1483–1498. https://doi.org/10.1016/0016-2361(96)00142-1. Dullien FAL (1992) Porous media: fluid transport and pore structure, 2nd edn. Acad Press, San Diego, p 574. Expedition 337 Scientists (2013) Site C0020. In: Inagaki F, Hinrichs K-U, Kubo Y, the Expedition 337 Scientists (eds) Proc. IODP, 337. Integrated Ocean Drilling Program Management International, Inc., Tokyo. https://doi.org/10.2204/iodp.proc.337.103.2013. Fernández Pinto VE, Vaamonde G, Montani ML (1991) Influence of water activity, temperature and incubation time on the accumulation of aflatoxin B1 in soybeans. Food Microbiol 8:195–201. https://doi.org/10.1016/0740-0020(91)90050-C. Filomena CM, Stollhofen H, van Ojik K (2012) High-resolution ultrasonic measurements as proxies to resolve clastic reservoir heterogeneity in a salt-cemented gas reservoirGeohorizon. Am Assoc Pet Geol Bull 96:1197–1209. Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol J 14:183–202. https://doi.org/10.1080/01490459709378043. Gamson PD, Beamish BB, Johnson DP (1993) Coal microstructure and micropermeability and their effects on natural gas recovery. Fuel 72:87–99. https://doi.org/10.1016/0016-2361(93)90381-B. Glombitza C, Adhikari RR, Riedinger N, Gilhooly WP, Hinrichs K-U, Inagaki F (2016) Microbial sulfate reduction potential in coal-bearing sediments down to ~2.5 km below the seafloor off Shimokita peninsula, Japan. Front Microbiol 7:1576. https://doi.org/10.3389/fmicb.2016.01576. Grant WD (2004) Life at low water activity. Philos Trans R Soc London Ser B Biol Sci 359:1249–1267. https://doi.org/10.1098/rstb.2004.1502. Griffin DM (1972) Ecology of soil fungi. Chapman and Hall, London. Gross D, Bechtel A, Harrington GJ (2015) Variability in coal facies as reflected by organic petrological and geochemical data in Cenozoic coal beds offshore Shimokita (Japan)—IODP Exp. 337. Int J Coal Geol 152:63–79. https://doi.org/10.1016/j.coal.2015.10.007. Hinrichs K-U, Inagaki F (2012) Downsizing the deep biosphere. Science (80- ) 338:204–205. https://doi.org/10.1126/science.1229296. Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94. https://doi.org/10.1038/nrmicro2939. Huettel M, Gust G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–267. Hunt JM, Whelan JK, Eglinton LB, Cathles LMI (1994) Gas generation—a major cause of deep Gulf Coast overpressure. Oil Gas J 92:59–63. Hunt JM, Whelan JK, Eglinton LB, Lii LMC (1998) Relation of shale porosities, gas generation, and compaction to deep overpressures in the U.S. Gulf Coast. In: Law BE, Ulmishek GF, Slavin VI (eds) Abnormal pressures in hydrocarbon environments. AAPG, Tulsa, pp 87–104. Ijiri A, Ikegawa Y, Inagaki F (2017) Data report: permeability of ~1.9 km-deep coal-bearing formation samples off the Shimokita Peninsula, Japan. In: Inagaki F, Hinrichs K-U, Kubo Y, the Expedition 337 Scientists (eds) Proceedings of the Integrated Ocean Drilling Program, 337. Integrated Ocean Drilling Program Management International, Inc., Tokyo. https://doi.org/10.2204/iodp.proc.337.202.2017. Inagaki F, Hinrichs K-U, Kubo Y, Bowles MW, Heuer VB, Hong W-L, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin Y-S, Methe BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu C-H, Murayama M, Ohkouchi N, Ono S, Park Y-S, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep microbial life in coal-bearing sediment down to 2.5 km below the ocean floor. Science (80- ) 349:420–424. https://doi.org/10.1126/science.aaa6882. Inagaki F, Hinrichs KU, Kubo Y, the Expedition 337 Scientists (2012) Deep coalbed biosphere off Shimokita:microbial processes and hydrocarbon system associated with deeply buried coalbed in the ocean. In: IODP Prel. Rept., 337. https://doi.org/10.2204/iodp.pr.337.2012. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2004) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235. https://doi.org/10.1128/AEM.69.12.7224%2D7235.2003. Jenkins MB, Bowman DD, Fogarty EA, Ghiorse WC (2002) Cryptosporidium parvum oocyst inactivation in three soil types at various temperatures and water potentials. Soil Biol Biochem 34:1101–1109. https://doi.org/10.1016/S0038-0717(02)00046-9. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 173–207. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109:16213–16216. https://doi.org/10.1073/pnas.1203849109. Laubach SE, Marrett RA, Olson JE, Scott AR (1998) Characteristics and origins of coal cleat: a review. Int J Coal Geol 35:175–207. https://doi.org/10.1016/S0166-5162(97)00012-8. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, Dordrecht. Law BE (1984) Relationships of source-rock, thermal maturity, and overpressuring to gas generation and occurrence in low-permeability Upper Cretaceous and lower Tertiary rocks, Greater Green River basin, Wyoming, Colorado, and Utah, pp 469–490. León y León CA (1998) New perspectives in mercury porosimetry. Adv Colloid Interf Sci 76–77:341–372 doi: https://doi.org/10.1016/S0001-8686(98)00052-9. Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 39:688–728 doi.org/10.1093/femsre/fuv020. Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994. Liu C-H, Huang X, Xie T-N, Duan N, Xue Y-R, Zhao T-X, Lever MA, Hinrichs K-U, Inagaki F (2017) Exploration of cultivable fungal communities in deep coal-bearing sediments from ~1.3 to 2.5 km below the ocean floor. Environ Microbiol 19:803–818. https://doi.org/10.1111/1462-2920.13653. Masui N, Morono Y, Inagaki F (2008) Microbiological assessment of circulation mud fluids during the first operation of riser drilling by the deep-earth research vessel Chikyu. Geomicrobiol J 25:274–282. https://doi.org/10.1080/01490450802258154. Morono Y, Terada T, Masui N, Inagaki F (2009) Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J 3:503–511. Musslewhite CL, McInerney MJ, Dong H, Onstott TC, Green-Blum M, Swift D, Macnaughton S, White DC, Murray C, Chien Y-J (2003) The factors controlling microbial distribution and activity in the shallow subsurface. Geomicrobiol J 20:245–261. https://doi.org/10.1080/01490450303877. Osawa M, Nakanishi S, Tanahashi M, Oda H (2002) Structure, tectonic evolution and gas exploration potential of offshore Sanriku and Hidaka provinces, Pacific Ocean, off northern Honshu and Hokkaido, JAPAN. J Japanese Assoc Pet Technol 67:38–51. https://doi.org/10.3720/japt.67.1_38. Osborne M, Swarbrick R (1997) Mechanisms for generating overpressure in sedimentary basins: a reevaluation. AAPG Bull 81:1023–1041. Osterman G, Keating K, Binley A, Slater L (2016) A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction. Water Resour Res 52:4321–4337. https://doi.org/10.1002/2015WR018472. Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28. https://doi.org/10.1007/PL00010971. Phadnis HS, Santamarina JC (2011) Bacteria in sediments: pore size effects. Géotechnique Lett 1:91–93. https://doi.org/10.1680/geolett.11.00008. Phelps TJ, Pfiffner SM, Sargent KA, White DC (1994) Factors influencing the abundance and metabolic capacities of microorganisms in eastern coastal plain sediments. Microb Ecol 28:351–364. https://doi.org/10.1007/BF00662028. Prasad M (2003) Velocity-permeability relations within hydraulic units. Geophysics 68:108–117. https://doi.org/10.1190/1.1543198. Raiders RA, McInerney MJ, Revus DE, Torbati HM, Knapp RM, Jenneman GE (1986) Selectivity and depth of microbial plugging in Berea sandstone cores. J Ind Microbiol 1:195–203. https://doi.org/10.1007/BF01569272. Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 22:251–261. https://doi.org/10.1016/0148-9062(85)92952-3. Rebata-Landa V, Santamarina JC (2006) Mechanical limits to microbial activity in deep sediments. Geochem Geophys Geosyst 7(11):n/a. https://doi.org/10.1029/2006GC001355, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006GC001355. Schulz HN, Jørgensen BB (2001) Big Bacteria. Annu Rev Microbiol 55:105–137. https://doi.org/10.1146/annurev.micro.55.1.105. Scott AR (2002) Hydrogeologic factors affecting gas content distribution in coal beds. Int J Coal Geol 50:363–387 doi: https://doi.org/10.1016/S0166-5162(02)00135-0. Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J 9:1333–1351. Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci 39:617–656. https://doi.org/10.1146/annurev-earth-040610-133343. Su X, Zhang L, Zhang R (2003) The abnormal pressure regime of the Pennsylvanian no. 8 coalbed methane reservoir in Liulin–Wupu District, Eastern Ordos Basin, China. Int J Coal Geol 53:227–239 doi: https://doi.org/10.1016/S0166-5162(03)00015-6. Sutherland JP, Bayliss AJ, Roberts TA (1994) Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, pH and sodium chloride. Int J Food Microbiol 21:217–236. https://doi.org/10.1016/0168-1605(94)90029-9. Swarbrick R, Osborne M (1998) Mechanisms that generate abnormal pressures: an overview. In: Law BE, Ulmishek GF, Slavin VI (eds) Abnormal pressures in hydrocarbon environments. AAPG, Tulsa, pp 13–34. Takano O, Itoh Y, Kusumoto S (2013) Variation in forearc basin configuration and basin-filling depositional systems as a function of trench slope break development and strike-slip movement: examples from the Cenozoic Ishikari–Sanriku-Oki and Tokai-Oki–Kumano-Nada forearc basins, Japan. In: APM (ed) Itoh YBT-M of SBF-MA. InTech, Rijeka, p 11. Tanikawa W, Hirose T, Mukoyoshi H, Tadai O, Lin W (2013) Fluid transport properties in sediments and their role in large slip near the surface of the plate boundary fault in the Japan Trench. Earth Planet Sci Lett 382:150–160. https://doi.org/10.1016/j.epsl.2013.08.052. Tanikawa W, Ohtomo Y, Snyder G, Morono Y, Kubo Y, Iijima Y, Noguchi T, Hinrichs KU, Inagaki F (2018) Data report: water activity of the deep coal-bering basin off Shimokita from IODP Expedition 337. In: Inagaki F, Hinrichs K-U, Kubo Y, the Expedition 337 Scientists (eds) Proceedings of the Integrated Ocean Drilling Program, 337. IODP-Management International, Inc., Tokyo. https://doi.org/10.2204/iodp.proc.337.204.2018. Tanikawa W, Tadai O, Morita S, Lin W, Yamada Y, Sanada Y, Moe K, Kubo Y, Inagaki F (2016) Thermal properties and thermal structure in the deep-water coalbed basin off the Shimokita Peninsula, Japan. Mar Pet Geol 73:445–461. https://doi.org/10.1016/j.marpetgeo.2016.03.006. Taylor SW, Milly PCD, Jaffé PR (1990) Biofilm growth and the related changes in the physical properties of a porous medium: 2. Permeability. Water Resour Res 26:2161–2169. https://doi.org/10.1029/WR026i009p02161. Tomaru H, Fehn U, Lu Z, Takeuchi R, Inagaki F, Imachi H, Kotani R, Matsumoto R, Aoike K (2009) Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita peninsula, Japan: 129I results from the C/V Chikyu shakedown cruise. Resour Geol 59:359–373. https://doi.org/10.1111/j.1751-3928.2009.00103.x. Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS, Inagaki F, Orphan VJ (2017) Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc Natl Acad Sci 114:E9206 LP–E92E9215. Updegraff DM (1983) Plugging and penetration of petroleum reservoir rock by microorganisms. In: Proceedings of the 1982 International Conference on Microbial Enhancement of Oil Recovery. Shangri-La, Afton, Oklahoma. B. Linville. Bartlesville Energy Technology Center, Bartlesville, p 85. Vandevivere P, Baveye P, de Lozada DS, DeLeo P (1995) Microbial clogging of saturated soils and aquifer materials: evaluation of mathematical models. Water Resour Res 31:2173–2180. https://doi.org/10.1029/95WR01568. Wangen M (1997) Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int J Numer Anal Methods Geomech 21:91–120. https://doi.org/10.1002/(SICI)1096-9853(199702)21:2<91::AID-NAG860>3.0.CO;2-L. Wibberley CAJ (2002) Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip. Earth Planets Space 54(11):1153–1171 doi.org/10.1186/BF03353317. Williams JP, Hallsworth JE (2009) Limits of life in hostile environments: no barriers to biosphere function? Environ Microbiol 11:3292–3308. https://doi.org/10.1111/j.1462-2920.2009.02079.x. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024. https://doi.org/10.1029/WR016i006p01016. Yakimov MM, Amro MM, Bock M, Boseker K, Fredrickson HL, Kessel DG, Timmis KN (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng 18:147–160 doi: https://doi.org/10.1016/S0920-4105(97)00015-6. Zhang C, Palumbo AV, Phelps TJ, Beauchamp JJ, Brockman FJ, Murray CJ, Parsons BS, Swift DJP (1998) Grain size and depth constraints on microbial variability in coastal plain subsurface sediments. Geomicrobiol J 15:171–185. https://doi.org/10.1080/01490459809378074. Zhao J, Li J, Xu Z (2018) Advances in the origin of overpressures in sedimentary basins. Pet Res 3:1–24. https://doi.org/10.1016/j.ptlrs.2018.03.007.