Geometry optimization of a heat storage system for concentrated solar power plants (CSP)

Renewable Energy - Tập 123 - Trang 227-235 - 2018
Aran Solé1, Quentin Falcoz2, Luisa F. Cabeza3, Pierre Neveu2
1Department of Mechanical Engineering and Construction, Universitat Jaume I, Campus del Riu Sec s/n, 12071 Castelló de la Plana, Spain
2University of Perpignan/PROMES-CNRS, Rambla de la thermodynamique, Tecnosud, 66100, Perpignan, France
3GREiA Research Group, INSPIRES Research Centre, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida, Spain

Tài liệu tham khảo

Worldwide trends in energy use and efficiency, 2008 Technology Roadmap, 2010 Vasallo, 2016, A MPC approach for optimal generation scheduling in CSP plants, Appl. Energy, 165, 357, 10.1016/j.apenergy.2015.12.092 Py, 2013, Concentrated solar power: current technologies, major innovative issues and applicability to West African countries, Renew. Sustain. Energy Rev., 18, 306, 10.1016/j.rser.2012.10.030 Lovegrove, 2012 Gil, 2010, State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization, Renew. Sustain. Energy Rev., 14, 31, 10.1016/j.rser.2009.07.035 Liu, 2015, Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications, Sol. Energy Mater. Sol. Cells, 139, 81, 10.1016/j.solmat.2015.03.014 Verdier, 2014, Design of a protection thermal energy storage using phase change material coupled to a solar receiver, High Temp. Mater. Process., 33, 509, 10.1515/htmp-2013-0081 Verdier, 2014, Experimentation of a high temperature thermal energy storage prototype using phase change materials for the thermal protection of a pressurized air solar receiver. SolarPACES 2013, Energy Proc., 49, 1044, 10.1016/j.egypro.2014.03.112 Peiro, 2016, Experimental analysis of charging and discharging processes with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup, Appl. Energy, 178, 394, 10.1016/j.apenergy.2016.06.032 Koepf, 2016, Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle, Appl. Energy, 165, 1004, 10.1016/j.apenergy.2015.12.106 Prieto, 2016, Review of technology: thermochemical energy storage for concentrated solar power plants, Renew. Sustain. Energy Rev., 60, 909, 10.1016/j.rser.2015.12.364 Tehrani, 2016, Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants, Renew. Energy, 96, 120, 10.1016/j.renene.2016.04.036 Xu, 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent development, Appl. Energy, 160, 286, 10.1016/j.apenergy.2015.09.016 Wu, 2014, Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules, Appl. Energy, 121, 184, 10.1016/j.apenergy.2014.01.085 Galione, 2015, Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives, Appl. Energy, 142, 337, 10.1016/j.apenergy.2014.12.084 Zhao, 2016, Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants, Appl. Energy, 178, 784, 10.1016/j.apenergy.2016.06.034 Longeon, 2013, Experimental and numerical study of annular PCM storage in the presence of natural convection, Appl. Energy, 112, 175, 10.1016/j.apenergy.2013.06.007 Tao, 2011, Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary, Appl. Energy, 88, 4172, 10.1016/j.apenergy.2011.04.039 Fornarelli, 2016, CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants, Appl. Energy, 164, 711, 10.1016/j.apenergy.2015.11.106 Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl. Energy, 137, 707, 10.1016/j.apenergy.2014.07.015 Zauner, 2016, Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM, Appl. Energy, 179, 237, 10.1016/j.apenergy.2016.06.138 Nithyanandam, 2013, Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power, Appl. Energy, 103, 400, 10.1016/j.apenergy.2012.09.056 Liu, 2013, Numerical modeling for solid–liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage, Appl. Energy, 112, 1222, 10.1016/j.apenergy.2013.02.022 Bejan, 2000 Manjunath, 2014, Second law of thermodynamic study of heat exchangers: a review, Renew. Sustain. Energy Rev., 40, 348, 10.1016/j.rser.2014.07.186 Azoumah, 2004, Constructal network for heat and mass transfer in a solid–gas reactive porous medium, Int. J. Heat Mass Tran., 47, 2961, 10.1016/j.ijheatmasstransfer.2004.03.022 Azoumah, 2006, Constructal design combined with entropy generation minimization for solid-gas reactors, Int. J. Therm. Sci., 45, 716, 10.1016/j.ijthermalsci.2005.10.006 Tescari, 2011, Constructal theory through thermodynamics of irreversible processes framework, Energy Convers. Manag., 52, 3176, 10.1016/j.enconman.2011.04.025 Bejan, 1997, Constructal-theory network of conducting paths for cooling a heat generating volume, Int. J. Heat Mass Tran., 40, 799, 10.1016/0017-9310(96)00175-5 Neveu, 2013, Combined constructal and exergy optimization of thermochemical reactors for high temperature heat storage, Energy Convers. Manag., 71, 186, 10.1016/j.enconman.2013.03.035 Calvet, 2013, Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity, Energy, 55, 956, 10.1016/j.energy.2013.03.078 D. Verdier, Stockage thermique de protection à chaleur latente intégré à un récepteur solaire à air pressurisé, PhD thesis, Université de Perpignan Via Domitia, https://hal.archives-ouvertes.fr/tel-01315613. Olivés, 2014, Intensification des transferts thermiques dans un module de stockage thermique: suivi du front de fusion par thermographie et simulation numérique