Geometricity for derived categories of algebraic stacks
Tóm tắt
We prove that the dg category of perfect complexes on a smooth, proper Deligne–Mumford stack over a field of characteristic zero is geometric in the sense of Orlov, and in particular smooth and proper. On the level of triangulated categories, this means that the derived category of perfect complexes embeds as an admissible subcategory into the bounded derived category of coherent sheaves on a smooth, projective variety. The same holds for a smooth, projective, tame Artin stack over an arbitrary field.
Tài liệu tham khảo
Abramovich, D., Graber, T., Vistoli, A.: Gromov–Witten theory of Deligne–Mumford stacks. Am. J. Math. 130(5), 1337–1398 (2008)
Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Ann. Inst. Fourier (Grenoble) 58(4), 1057–1091 (2008)
Bayer, A., Cadman, C.: Quantum cohomology of \([{\mathbb{C}}^N/\mu _r]\). Compos. Math. 146(5), 1291–1322 (2010)
Bergh, D.: Functorial destackification of tame stacks with abelian stabilisers. arXiv:1409.5713v1 (2014)
Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions/mutations. Izv. Akad. Nauk SSSR Ser. Mat. 53(6), 1183–1205, 1337 (1989)
Bergh, D., Rydh, D.: Functorial destackification and weak factorization of orbifolds. In preparation (2015)
Bergh, D., Schnürer, O.M.: Conservative descent for semi-orthogonal decompositions. In preparation (2016)
Bondal, A., Van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36, 258 (2003)
Cadman, C.: Using stacks to impose tangency conditions on curves. Am. J. Math. 129(2), 405–427 (2007)
Choudhury, U.: Motives of Deligne–Mumford stacks. Adv. Math. 231(6), 3094–3117 (2012)
Canonaco, A., Stellari, P.: Uniqueness of dg enhancements for the derived category of a Grothendieck category. arxiv:1507.05509v2 (2015)
Cisinski, D.-C., Tabuada, G.: Symmetric monoidal structure on non-commutative motives. J. K-Theory 9(2), 201–268 (2012)
Grothendieck, A.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math 8, 222 (1961)
Faltings, G.: Finiteness of coherent cohomology for proper fppf stacks. J. Algebr. Geom. 12(2), 357–366 (2003)
Fantechi, B., Mann, E., Nironi, F.: Smooth toric Deligne–Mumford stacks. J. Reine Angew. Math. 648, 201–244 (2010)
Hall, J.: The Balmer spectrum of a tame stack. Ann. K-Theory 1(3), 259–274 (2016)
Herschend, M., Iyama, O.: \(n\)-representation-finite algebras and twisted fractionally Calabi–Yau algebras. Bull. Lond. Math. Soc. 43(3), 449–466 (2011)
Halpern-Leistner, D., Pomerleano, D.: Equivariant hodge theory and noncommutative geometry. arXiv:1507.01924v1 (2015)
Hall, J., Neeman, A., Rydh, D.: One positive and two negative results for derived categories of algebraic stacks. arXiv:1405.1888v2 (2014)
Hall, J., Rydh, D.: Perfect complexes on algebraic stacks. arXiv:1405.1887v2 (2014)
Hall, J., Rydh, D.: Algebraic groups and compact generation of their derived categories of representations. Indiana Univ. Math. J. 64, 1903–1923 (2015)
Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006)
Ishii, A., Ueda, K.: The special McKay correspondence and exceptional collection. arXiv:1104.2381v2 (2011)
Keller, B.: On differential graded categories. In: International Congress of Mathematicians. Vol. II, pp. 151–190. Eur. Math. Soc., Zürich (2006)
Keel, S., Mori, S.: Quotients by groupoids. Ann. Math. (2) 145(1), 193–213 (1997)
Kollár, J.: Quotient spaces modulo algebraic groups. Ann. Math. (2) 145(1), 33–79 (1997)
Kresch, A.: On the geometry of Deligne–Mumford stacks. In: Algebraic geometry—Seattle 2005. Part 1, Volume 80 of Proceedings of Symposium on Pure Mathematics, pp. 259–271. Amer. Math. Soc., Providence, RI (2009)
Kresch, A., Vistoli, A.: On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map. Bull. Lond. Math. Soc. 36(2), 188–192 (2004)
Laumon, G., Moret-Bailly, L.: Champs algébriques, Volume 39 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer, Berlin (2000)
Laszlo, Y., Olsson, M.: The six operations for sheaves on Artin stacks. I. Finite coefficients. Publ. Math Inst. Hautes Études Sci 107, 109–168 (2008)
Lunts, V.A., Orlov, D.O.: Uniqueness of enhancement for triangulated categories. J. Am. Math. Soc. 23(3), 853–908 (2010)
Lunts, V.A., Schnürer, O.M.: Matrix-factorizations and semi-orthogonal decompositions for blowing-ups. J. Noncommut. Geom. arXiv:1212.2670v2 (2012)
Lunts, V.A., Schnürer, O.M.: Matrix factorizations and motivic measures. J. Noncommut. Geom. arXiv:1310.7640v2 (2013)
Lunts, V.A., Schnürer, O.M.: New enhancements of derived categories of coherent sheaves and applications. J. Algebra 446, 203–274 (2016)
Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, Volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)
Olsson, M.: Sheaves on Artin stacks. J. Reine Angew. Math. 603, 55–112 (2007)
Olsson, M.: Integral models for moduli spaces of \(G\)-torsors. Ann. Inst. Fourier (Grenoble) 62(4), 1483–1549 (2012)
Orlov, D.O.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 852–862 (1992)
Orlov, D.: Smooth and proper noncommutative schemes and gluing of dg categories. arXiv:1402.7364v5 (2014)
Riche, S.: Koszul duality and modular representations of semisimple Lie algebras. Duke Math. J. 154(1), 31–134 (2010)
Rydh, D.: Existence and properties of geometric quotients. J. Algebr. Geom. 22(4), 629–669 (2013)
Rydh, D.: Approximation of sheaves on algebraic stacks. Int. Math. Res. Notices 2016(3), 717–737 (2016)
Rydh, D.: Do line bundles descend to coarse moduli spaces of Artin stacks with finite inertia? MathOverflow. http://mathoverflow.net/q/206117 (version: 2015-05-09) (2015)
Schnürer, O.M.: Six operations on dg enhancements of derived categories of sheaves. arXiv:1507.08697v1 (2015)
Alexander, G.: Revêtements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003. Séminaire de géométrie algébrique du Bois Marie 1960–61. Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin]
Berthelot, P., Grothendieck, A., Illusie, L.: Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in Mathematics, vol. 225. Springer, Berlin (1971)
The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu (2016)
Tabuada, G.: A guided tour through the garden of noncommutative motives. In: Topics in Noncommutative Geometry, Volume 16 of Clay Mathematics Proceedings, pp. 259–276. Amer. Math. Soc., Providence, RI (2012)
Toën, B.: Finitude homotopique des dg-algèbres propres et lisses. Proc. Lond. Math. Soc (3) 98(1), 217–240 (2009)
Toën, B.: Lectures on DG-categories. In: Topics in Algebraic and Topological \(K\)-Theory, Volume 2008 of Lecture Notes in Mathematics, pp. 243–302. Springer, Berlin (2011)
Toën, B., Vaquié, M.: Moduli of objects in dg-categories. Ann Sci École Norm Sup 40(3), 387–444 (2007)