Geometrical study of prime order automorphisms on Klein surfaces
Tóm tắt
We consider (n,q)-gonal Klein surfaces of algebraic genus p≥2 for which n≥p and n prime. We exclude the case n=2 corresponding to q-hyperelliptic surfaces, so n≥3. We study geometrical conditions on fundamental polygons of the NEC groups which uniformize these surfaces. From these conditions we give a way to construct such surfaces and obtain parameters which characterize them.
Tài liệu tham khảo
Alling, N.L., Greenleaf, N.: Foundations of the theory of Klein surfaces. In: Lecture Notes in Math., vol. 219. Springer, Berlin (1971)
Beardon, A.F.: The geometry of discrete groups. In: GTM, vol. 91. Springer, Berlin (1983)
Bujalance, E., Etayo, J.J., Gamboa, J.M., Gromadzki, G.: Automorphism groups of compact bordered Klein surfaces. A combinatorial approach. In: Lect. Not. in Math., vol. 1439. Springer, Berlin (1990)
Buser, P.: Geometry and spectra of compact Riemann surfaces. In: Progress in Math., vol. 106. Birkhäuser, Basel (1992)
Costa, A.F., Martínez, E.: Planar hyperelliptic Klein surfaces and fundamental regions of NEC groups. In: London Math. Soc. Lect. Note Ser., vol. 173, pp. 57–65 (1992)
Estrada, B.: Geometrical characterization of q-hyperelliptic planar Klein surfaces. Comput. Methods Funct. Theory 2, 267–279 (2002)
Estrada, B., Martínez, E.: On q-hyperelliptic k-bordered tori. Glasg. Math. J. 43, 343–357 (2001)
Estrada, B., Martínez, E.: Coordinates for the Teichmüller space of planar surface NEC groups. Int. J. Math. 14, 1037–1052 (2003)
Estrada, B., Martínez, E.: Parametrization of the Teichmüller space of bordered surface NEC groups. Acta Math. Sin. Engl. Ser. 24, 1039–1056 (2008)
Estrada, B., Martínez, E.: Automorphism groups of q-trigonal Klein surfaces and maximal surfaces. J. Math. Soc. Jpn. 61, 607–623 (2009)
Etayo, J.J.: On the order of automorphism groups of Klein surfaces. Glasg. Math. J. 26, 75–81 (1985)
Hidalgo, R.A.: Γ-hyperelliptic Riemann surfaces. Revista Proyecciones. 17, 77–117 (1998)
May, C.L.: Large automorphism groups of compact Klein surfaces with boundary. Glasg. Math. J. 18, 1–10 (1977)
Schmutz Schaller, P.: Geometric characterization of hyperelliptic Riemann surfaces. Ann. Acad. Sci. Fenn. Math. 25, 85–90 (2000)
Urzúa, G.: Riemann surfaces of genus g with an automorphism of order p prime and p>g. Manuscr. Math. 121, 169–189 (2006)
Wilkie, H.C.: On non-Euclidean crystallographic groups. Math. Z. 91, 87–102 (1966)