Geometrical properties of some Euler and circular cubics. Part 1

Journal of Geometry - Tập 66 - Trang 72-103 - 1999
Henry Martyn Cundy1, Cyril Frederick Parry2
1Kendal, UK
2Exmouth, UK

Tóm tắt

This sequel to our earlier paper (1995) continues the investigation of the Euler cubic curves therein defined, with particular reference to perspectivities and associated conics. Study of the circular cubic in this pencil, the Neuberg cubic, brings with it some discussion of the properties of circular cubics in general.

Tài liệu tham khảo

COURT, N.A.:College Geometry, Barnes & Noble, 1952. COXETER, H.S.M.: Some applications of trilinear coordinates,Linear Algebra 226–8, (1995), 375–388. CUNDY, H.M.: Curves and conjugacy; a tour of some interesting geometry,Math. Gaz. 80 (1996), 216. CUNDY, H.M. & PARRY, C.F.: Some cubic curves associated with a triangle,J. Geom. 53 (1995), 41–66. DARBOUX, G.:Nouvelles Annales de Math. (2)5 (1866), 420–5. EDDY, R.H. & FRITSCH, R.: The conics of Ludwig Kiepert,Math. Mag. 67 (1994), 188–205. JOHNSON, R.A.:Advanced Euclidean Geometry, 1929, reprinted Dover 1960. KIMBERLING, C.:Triangle Centres and Central Triangles, Utilitas Mathematica Publishing, Inc., Winnipeg 1998. McCAY, H.S.: On three similar figures,Trans. Royal Irish Acad. 29 (1887–92), 303–320. MORLEY, F. & MORLEY F.V.:Inversive Geometry, Bell, London 1933. NEUBERG, J.: Memoire sur la tetraedre,Acad. Royale des Sciences 37 (1886), 64. PARRY, C.F.: Steiner-Lehmus & the automedian triangle,Math. Gaz. 75 (1991), 151–154. PINKERNELL, G.M.: Cubic curves in the triangle plane,J. Geom. 55 (1996), 141–161. ROBSON, A.:An Introduction to Analytical Geometry, II, Cambridge University Press, Cambridge, 1947. THOMSON, F. D.:Education Times 2 (1864), 57. WOOD, P.W.: Points isogonally conjugate with respect to a triangle,Math. Gaz. 25 (1941), 266–272. YFF, P.: Two families of cubics,MAA Notes 34 (1994), 127–137.