Geometrical process design during continuous generating grinding of cutting tools

Berend Denkena1, Benjamin Bergmann1, Mirko Theuer1, Philipp Wolters1
1Institute of Production Engineering and Machine Tools, Leibniz University Hannover, Garbsen, Germany

Tóm tắt

Modern cutting tools like end mills, drilling tools, and reamers underlie high requirements regarding geometrical accuracy, cutting edge quality, and production costs. However, the potential for process optimization is limited due to the process kinematics during grinding. Consequently, a novel tool grinding process for the manufacture of cutting tools has been developed recently at the Institute for Production Engineering and Machine Tools (IFW). This continuous generating grinding process allows the simultaneous production of all flutes and circumferential flank faces of rotational symmetrical cutting tools. The present paper focuses on the geometrical process design and develops a method to determine the necessary basic rack and process parameters in order to create a desired cutting edge geometry by continuous generating grinding. The developed method can define all parameters with an accuracy of up to 5 µm and 0.2° within a simulation in five iteration steps and allows not only the quantitative design of the cutting tool geometry but a qualitative modification of the flute geometry as well. Subsequently performed grinding tests showed that the presented method allows the design of grinding worms for continuous generating grinding of cutting tools and enables the successful implementation of these processes.

Tài liệu tham khảo

Uhlmann E, Hübert C (2011) Tool grinding of end mill cutting tools made from high performance ceramics and cemented carbides. CIRP Ann Manuf Technol 60:359–362 Brinksmeuer E, Mutlugünes Y, Klocke F, Aurich JC, Shore P, Ohmori H (2010) Ultra-precision grinding. CIRP Ann Manuf Technol 59:652–671 Maldaner J (2008) Verbesserung des Zerpsanverhaltens von Werkzeugen mit Hartmetall-Schneidelementen durch Variation der Schleifbearbeitung. Dr.-Ing. Dissertation, Universität Kassel Wang SX, Geng L, Liu XJ, Geng B, Niu SC (2009) Manufacture of a new kind diamond grinding wheel with Al-base bonding agent. J Mater Process Technol 209:1871–1876 Webster J, Tricard M (2004) Innovations in abrasive products for precision grinding. CIRP Ann Manuf Technol 53(2):597–617 Uhlmann E, Schröer N (2015) Advances in tool grinding and development of end mills for machining of fiber reinforced plastics. Procedia CIRP 35:38–44 Liu YK, Tso PL (2003) The optimal diamond wheels for grinding diamond tools. Int J Adv Manuf Technol 22:396–400 Rabiey M, Jochum N, Kuster F (2013) High performance grinding of zirconium oxide (ZrO2) using hybrid bond diamond tools. CIRP Ann Manuf Technol 62(1):343–346 Schröer N (2018) Spannutschleifen von Hartmetall-Schaftwerkzeugen mit gradierten Schleifscheiben. Dr.-Ing. Dissertation, Technische Universität Berlin Denkena B, Bergmann B, Raffalt D (2022) Operational behaviour of graded diamond grinding wheels for end mill cutter machining. Springer Nature Applied Sciences 4:84 Denkena B, Friemuth T, Spenger C Modelling and process design for different grinding operations of carbide tools. Production Engineering Research and Development 10(1):15–18 Ohmori H, Katahira K, Naruse T, Uehara Y, Nakao A, Mizutani M (2007) Microscopic grinding effects in fabrication of ultra-fine micro tools. CIRP Ann 56(1):569–572 Weinert K, Schneider M, Willsch C (1996) Influence of grinding on the quality of cutting edge. Prod Eng Res Devel 3(2):49–52 Zhao X, Zhang S, Zhen W (2016) Potential failure cause analysis of tungsten carbide end mills for titanium alloy machining. Eng Fail Anal 66:321–327 Arul Saravanapriyan SN, Vijayaraghavan, L.: Krishnamurthy, R. (2003) Significance of grinding burn on high speed steel tool performance. J Mater Process Technol 134:166–173 Breidenstein B (2011) Oberflächen und Randzonen hoch belasteter Bauteile. Habilitation thesis, Leibniz University Hannover Uhlmann E, Klein K (2001) Method for the analysis of residual stress induced failure in thin films. Annals of the CIRP 50(1):401–404 Teppernegg T, Klünsner T, Angerer P, Tritremmel C, Czettl C, Keckes J, Ebner R, Pippan R (2014) Evolution of residual stress and damage in coated hard metal milling inserts over the complete tool life. Int J Refract Metal Hard Mater 47:80–85 Karpuschewski B, Knoche KJ, Hipke M (2008) Gear finishing by abrasive processes. CIRP Ann Manuf Technol 57(2):621–640 Denkena B, Krödel A, Theuer M (2020) Novel continuous generating grinding process for the production of cutting tools. CIRP J Manuf Sci Technol 28:1–7 Theuer M (2020) Kontinuierliches Wälzschleifen von Zerspanwerkzeugen. Dr.-Ing. Dissertation, Leibniz University Hannover Brecher C, Klocke F, Brumm M, Hübner F (2014) Local simulation of the specific material removal rate for generating gear grinding. In: International Gear Conference 2014: 26th-28th August, Lyon, pp. 466–475, Chandos Publishing Dietz C, Wegener K, Thyssen W (2016) Continous generating grinding: machine tool optimisation by coupled manufacturing simulation. J Manuf Process 23:211–221 Guo H, Wang X, Zhao N, Fu B, Liu L (2022) Simulation analysis and experiment of instantaneous temperature field for grinding face gear with a grinding worm. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-09036-z Klocke F, Brumm M, Reimann J (2013) Modeling of surface zone influences in generating gear grinding. Procedia CIRP 8:21–26 Brecher C, Brumm M, Hübner F (2015) Approach for the calculation of cutting forces in generating gear grinding. Procedia CIRP 33:287–292 Haifeng C, Tang J, Zhou W (2013) Modeling and predicting of surface roughness for generating grinding gear. J Mater Process Technol 213(5):717–721 Böttger J, Kimme S, Drossel W-G (2019) Simulation of dressing process for continuous generating gear grinding. Procedia CIRP 79:280–285 Hübner F, Löpenhaus C, Klocke F, Brecher C (2016) Extended calculation model for generating gear grinding processes. Advanced Materials Research 1140:141–148 de Oliveira Teixeira P, Brimmers J, Bergs T (2021) Consideration of micro-interaction in the modeling of generating gear grinding processes. Forsch Ingenieurwes. https://doi.org/10.1007/s10010-021-00533-3 Denkena B, Köhler J, Schindler A, Woiwode S (2014) Continuous generating grinding - Material engagement in gear tooth root machining. Mech Mach Theory 81:11–20 Denkena B, Böß V (2009) Technological NC simulation for grinding and cutting processes using CutS. Proceedings of the 12th CIRP Conference on Modelling of Machining Operations Felderhoff JF (2011) Prozessgestaltung für das Drehen und Tiefbohren schwefelarmer Edelbaustähle. Dr.-Ing. Dissertation, Technische Universität Dortmund Abele E, Fujara M (2010) Simulation-Based Twist Drill design and Geometry Optimization. CIRP Ann Manuf Technol 59:145–150