Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Bất đẳng thức hình học ràng buộc mômen góc và điện tích trong Thuyết Tương đối Tổng quát
Tóm tắt
Các bất đẳng thức hình học thể hiện cách mà những tham số nhất định của một hệ vật lý đặt ra các ràng buộc cho các tham số khác. Ví dụ, một hố đen có khối lượng nhất định không thể quay quá nhanh, hoặc một vật thể thông thường có kích thước cho trước không thể mang quá nhiều điện tích. Trong bài báo này, chúng tôi quan tâm đến các giới hạn về mômen góc và điện tích điện từ, theo tổng khối lượng và kích thước. Chúng tôi chủ yếu tập trung vào các bất đẳng thức cho hố đen và các vật thể thông thường. Hố đen là các hệ thống được nghiên cứu nhiều nhất trong ngữ cảnh này trong Thuyết Tương đối Tổng quát, và nơi mà hầu hết các kết quả đã được tìm thấy. Mặt khác, các vật thể thông thường đưa ra nhiều thách thức và nhiều câu hỏi cơ bản liên quan đến các ước lượng hình học cho chúng vẫn chưa có lời giải đáp. Chúng tôi trình bày nhiều kết quả trong những lĩnh vực này. Chúng tôi nhấn mạnh việc xác định các điều kiện toán học dẫn đến những ước lượng đó, cả cho hố đen và các vật thể thông thường.
Từ khóa
#bất đẳng thức hình học #mômen góc #điện tích điện từ #Thuyết Tương đối Tổng quát #hố đen #vật thể thông thườngTài liệu tham khảo
Aceña AE, Dain S (2013) Stable isoperimetric surfaces in super-extreme Reissner–Nordström. Class Quantum Grav 30:045013. https://doi.org/10.1088/0264-9381/30/4/045013. arXiv:1210.3509
Aceña A, Dain S, Gabach Clément ME (2011) Horizon area–angular momentum inequality for a class of axially symmetric black holes. Class Quantum Grav 28:105014 arXiv:1012.2413
Alaee A, Kunduri HK (2014) Mass functional for initial data in 4 + 1-dimensional spacetime. Phys Rev D 90:124078. https://doi.org/10.1103/PhysRevD.90.124078. arXiv:1411.0609
Alaee A, Kunduri HK (2016) Remarks on mass and angular momenta for \(U(1)^2\)-invariant initial data. J Math Phys 57:032502. https://doi.org/10.1063/1.4944426. arXiv:1508.02337
Alaee A, Khuri M, Kunduri H (2016) Proof of the mass–angular momentum inequality for bi-axisymmetric black holes with spherical topology. Adv Theor Math Phys 20:1397–1441. https://doi.org/10.4310/ATMP.2016.v20.n6.a4. arXiv:1510.06974
Alaee A, Khuri M, Kunduri H (2017a) Mass–angular-momentum inequality for black ring spacetimes. Phys Rev Lett 119:071101. https://doi.org/10.1103/PhysRevLett.119.071101. arXiv:1705.08799
Alaee A, Khuri M, Kunduri H (2017b) Relating mass to angular momentum and charge in five-dimensional minimal supergravity. Ann Henri Poincaré 18:1703–1753. https://doi.org/10.1007/s00023-016-0542-1. arXiv:1608.06589
Andersson L, Metzger J (2009) The area of horizons and the trapped region. Commun Math Phys 290:941–972. https://doi.org/10.1007/s00220-008-0723-y. arXiv:0708.4252
Andersson L, Mars M, Simon W (2005) Local existence of dynamical and trapping horizons. Phys Rev Lett 95:111102. https://doi.org/10.1103/PhysRevLett.95.111102. arXiv:gr-qc/0506013
Andersson L, Mars M, Simon W (2008a) Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv Theor Math Phys 12:853–888. https://doi.org/10.4310/ATMP.2008.v12.n4.a5. arXiv:0704.2889
Andersson L, Mars M, Simon W (2008b) Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv Theor Math Phys 12:853–888. https://doi.org/10.4310/ATMP.2008.v12.n4.a5. http://projecteuclid.org/getRecord?id=euclid.atmp/1216046746
Andersson L, Eichmair M, Metzger J (2011) Jang’s equation and its applications to marginally trapped surfaces. In: Agranovsky M et al (eds) Complex analysis and dynamical systems IV, part 2. General relativity, geometry, and PDE. Contemporary mathematics, vol 554. American Mathematical Society, Providence, pp 13–46 arXiv:1006.4601
Anglada P (2017) Penrose-like inequality with angular momentum for minimal surfaces. ArXiv e-prints arXiv:1708.04646
Anglada P, Dain S, Ortiz OE (2016) Inequality between size and charge in spherical symmetry. Phys Rev D 93:044055. https://doi.org/10.1103/PhysRevD.93.044055. arXiv:1511.04489
Anglada P, Gabach Clément ME, Ortiz OE (2017) Size, angular momentum and mass for objects. Class Quantum Grav 34:125011. https://doi.org/10.1088/1361-6382/aa6f3f. arXiv:1612.08658
Ansorg M, Hennig J (2008) The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class Quantum Grav 25:222001. https://doi.org/10.1088/0264-9381/25/22/222001. arXiv:0810.3998
Ansorg M, Hennig J (2009) The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory. Phys Rev Lett 102:221102. https://doi.org/10.1103/PhysRevLett.102.221102. arXiv:0903.5405
Ansorg M, Pfister H (2008) A universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class Quantum Grav 25:035009. https://doi.org/10.1088/0264-9381/25/3/035009. arXiv:0708.4196
Ansorg M, Hennig J, Cederbaum C (2011) Universal properties of distorted Kerr–Newman black holes. Gen Relativ Gravit 43:1205–1210. https://doi.org/10.1007/s10714-010-1136-8. arXiv:1005.3128
Arnowitt R, Deser S, Misner CW (1962) The dynamics of general relativity. In: Witten L (ed) Gravitation: an introduction to current research. Wiley, New York, pp 227–265 arXiv:gr-qc/0405109
Ashtekar A, Krishnan B (2002) Dynamical horizons: energy, angular momentum, fluxes and balance laws. Phys Rev Lett 89:261101. https://doi.org/10.1103/PhysRevLett.89.261101. arXiv:gr-qc/0207080
Ashtekar A, Krishnan B (2003) Dynamical horizons and their properties. Phys Rev D 68:104030. https://doi.org/10.1103/PhysRevD.68.104030. arXiv:gr-qc/0308033
Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Relativ 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042
Ashtekar A, Beetle C, Fairhurst S (2000a) Mechanics of isolated horizons. Class Quantum Grav 17:253 arXiv:gr-qc/9907068
Ashtekar A, Fairhurst S, Krishnan B (2000b) Isolated horizons: Hamiltonian evolution and the first law. Phys Rev D 62:104025 arXiv:gr-qc/0005083
Bardeen JM, Carter B, Hawking SW (1973) The four laws of black hole mechanics. Commun Math Phys 31:161–170. https://doi.org/10.1007/BF01645742
Bartnik R (1986) The mass of an asymptotically flat manifold. Commun Pure App Math 39:661–693
Bartnik RA, Chruściel PT (2005) Boundary value problems for Dirac-type equations. J Reine Angew Math 579:13–73. https://doi.org/10.1515/crll.2005.2005.579.13. arXiv:math.DG/0307278
Beetle C, Wilder S (2015) A note on axial symmetries. Class Quantum Grav 32:047001. https://doi.org/10.1088/0264-9381/32/4/047001. arXiv:1401.0075
Beig R, Chruściel PT (1996) Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem. J Math Phys 37:1939–1961. https://doi.org/10.1063/1.531497. arXiv:gr-qc/9510015
Beig R, O’Murchadha N (1996) Vacuum spacetimes with future trapped surfaces. Class Quantum Grav 13:739–752. https://doi.org/10.1088/0264-9381/13/4/014. arXiv:gr-qc/9511070
Beig R, Schoen RM (2009) On static \(n\)-body configurations in relativity. Class Quantum Grav 26:075014. https://doi.org/10.1088/0264-9381/26/7/075014. arXiv:0811.1727
Bode T, Laguna P, Matzner R (2011) Super-extremal spinning black holes via accretion. Phys Rev D 84:064044. https://doi.org/10.1103/PhysRevD.84.064044. arXiv:1106.1864
Bonnor WB (1980) Equilibrium of charged dust in general relativity. Gen Relativ Gravit 12:453–465. https://doi.org/10.1007/BF00756176
Bonnor WB (1998) A model of a spheroidal body. Class Quantum Grav 15:351. https://doi.org/10.1088/0264-9381/15/2/009
Booth I (2005) Black hole boundaries. Can J Phys 83:1073–1099. https://doi.org/10.1139/p05-063. arXiv:gr-qc/0508107
Booth I, Fairhurst S (2008) Extremality conditions for isolated and dynamical horizons. Phys Rev D 77:084005. https://doi.org/10.1103/PhysRevD.77.084005. arXiv:0708.2209
Bray HL, Jauregui JL (2015) Time flat surfaces and the monotonicity of the spacetime Hawking mass. Commun Math Phys 335:285–307. https://doi.org/10.1007/s00220-014-2162-2. arXiv:1310.8638
Bray HL, Jauregui JL, Mars M (2016) Time flat surfaces and the monotonicity of the spacetime Hawking mass II. Ann Henri Poincaré 17:1457–1475. https://doi.org/10.1007/s00023-015-0420-2. arXiv:1402.3287
Bryden ET, Khuri MA (2017) The area–angular momentum–charge inequality for black holes with positive cosmological constant. Class Quantum Grav 34:125017. https://doi.org/10.1088/1361-6382/aa70fd. arXiv:1611.10287
Cabrera-Munguia I (2015) Binary system of unequal counterrotating Kerr–Newman sources. Phys Rev D 91:044005. https://doi.org/10.1103/PhysRevD.91.044005. arXiv:1505.07080
Cabrera-Munguia I, Manko V, Ruiz E (2010) Remarks on the mass–angular momentum relations for two extreme Kerr sources in equilibrium. Phys Rev D 82:124042. https://doi.org/10.1103/PhysRevD.82.124042. arXiv:1010.0697
Cabrera-Munguia I, Lämmerzahl C, Macías A (2013) Exact solution for a binary system of unequal counter-rotating black holes. Class Quantum Grav 30:175020. https://doi.org/10.1088/0264-9381/30/17/175020. arXiv:1302.4843
Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, New York
Carroll SM, Johnson MC, Randall L (2009) Extremal limits and black hole entropy. JHEP 11:109. https://doi.org/10.1088/1126-6708/2009/11/109. arXiv:0901.0931
Carter B (1973) Black hole equilibrium states. In: Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972). Gordon and Breach, New York, pp 57–214
Cha YS, Khuri MA (2014) Deformations of axially symmetric initial data and the mass–angular momentum inequality. Ann Henri Poincaré 1–56. https://doi.org/10.1007/s00023-014-0332-6. arXiv:1401.3384
Cha YS, Khuri MA (2015) Deformations of charged axially symmetric initial data and the mass–angular momentum–charge inequality. Ann Henri Poincaré 16:2881–2918. https://doi.org/10.1007/s00023-014-0378-5. arXiv:1407.3621
Cha YS, Khuri MA (2017) Transformations of asymptotically AdS hyperbolic initial data and associated geometric inequalities. ArXiv e-prints arXiv:1707.09398
Cha YS, Khuri M, Sakovich A (2016) Reduction arguments for geometric inequalities associated with asymptotically hyperboloidal slices. Class Quantum Grav 33:035009. https://doi.org/10.1088/0264-9381/33/3/035009. arXiv:1509.06255
Chen PN, Wang MT, Yau ST (2016) Quasilocal angular momentum and center of mass in general relativity. Adv Theor Math Phys 20:671–682. https://doi.org/10.4310/ATMP.2016.v20.n4.a1. arXiv:1312.0990
Christodoulou D (1970) Reversible and irreversible transforations in black-hole physics. Phys Rev Lett 25:1596–1597. https://doi.org/10.1103/PhysRevLett.25.1596
Christodoulou D (1999) The instability of naked singularities in the gravitational collapse of a scalar field. Ann Math 149:183–217
Christodoulou D (2008) The formation of black holes in general relativity. In: On recent developments in theoretical and experimental general relativity, astrophysics and relativistic field theories. Proceedings, 12th Marcel Grossmann meeting on general relativity, Paris, France, July 12–18, 2009, vol 1–3, pp 24–34. https://doi.org/10.1142/9789814374552_0002. arXiv:0805.3880
Chruściel P (1986) Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological properties and global structure of space-time (Erice, 1985). NATO advanced science institutes series B physics, vol 138. Plenum, New York, pp 49–59. http://www.phys.univ-tours.fr/~piotr/scans
Chruściel PT (2008) Mass and angular–momentum inequalities for axi-symmetric initial data sets I. Positivity of mass. Ann Phys 323:2566–2590. https://doi.org/10.1016/j.aop.2007.12.010. arXiv:0710.3680
Chruściel PT, Lopes Costa J (2009) Mass, angular–momentum, and charge inequalities for axisymmetric initial data. Class Quantum Grav 26:235013. https://doi.org/10.1088/0264-9381/26/23/235013. arXiv:0909.5625
Chruściel PT, Mazzeo R (2015) Initial data sets with ends of cylindrical type: I. The Lichnerowicz equation. Ann Henri Poincaré 16:1231–1266. https://doi.org/10.1007/s00023-014-0339-z. arXiv:1201.4937
Chruściel PT, Nguyen L (2011) A lower bound for the mass of axisymmetric connected black hole data sets. Class Quantum Grav 28:125001. https://doi.org/10.1088/0264-9381/28/12/125001. arXiv:1102.1175
Chruściel PT, Delay E, Galloway GJ, Howard R (2001) The area theorem. Ann Henri Poincaré 2:109–178. https://doi.org/10.1007/PL00001029. arXiv:gr-qc/0001003
Chruściel PT, Maerten D, Tod P (2006a) Rigid upper bounds for the angular momentum and centre of mass of non-singular asymptotically anti-de Sitter space-times. JHEP 11:084. https://doi.org/10.1088/1126-6708/2006/11/084. arXiv:gr-qc/0606064
Chruściel PT, Reall HS, Tod P (2006b) On Israel–Wilson–Perjes black holes. Class Quantum Grav 23:2519–2540. https://doi.org/10.1088/0264-9381/23/7/018. arXiv:gr-qc/0512116
Chruściel PT, Li Y, Weinstein G (2008) Mass and angular-momentum inequalities for axi-symmetric initial data sets. II. Angular-momentum. Ann Phys 323:2591–2613. https://doi.org/10.1016/j.aop.2007.12.011. arXiv:0712.4064
Chruściel PT, Eckstein M, Nguyen L, Szybka SJ (2011) Existence of singularities in two-Kerr black holes. Class Quantum Grav 28:245017. https://doi.org/10.1088/0264-9381/28/24/245017. arXiv:1111.1448
Chruściel PT, Costa JL, Heusler M (2012) Stationary black holes: uniqueness and beyond. Living Rev Relativ 15:7. https://doi.org/10.12942/lrr-2012-7. arXiv:1205.6112
Chruściel PT, Mazzeo R, Pocchiola S (2013) Initial data sets with ends of cylindrical type: II. The vector constraint equation. Adv Theor Math Phys 17:829–865. https://doi.org/10.4310/ATMP.2013.v17.n4.a4. arXiv:1203.5138
Chruściel PT, Szybka SJ, Tod P (2017) Towards a classification of near-horizons geometries. ArXiv e-prints arXiv:1707.01118
Compere G (2017) The Kerr/CFT correspondence and its extensions. Living Rev Relativ 20:1. https://doi.org/10.1007/s41114-017-0003-2. arXiv:1203.3561
Corvino J, Gerek A, Greenberg M, Krummel B (2007) On isoperimetric surfaces in general relativity. Pacific J Math 231:63–84. https://doi.org/10.2140/pjm.2007.231.63
Costa JL (2010) Proof of a Dain inequality with charge. J Phys A 43:285202 arXiv:0912.0838
Cvetic M, Gibbons G, Pope C (2011a) Universal area product formulae for rotating and charged black holes in four and higher dimensions. Phys Rev Lett 106:121301. https://doi.org/10.1103/PhysRevLett.106.121301. arXiv:1011.0008
Cvetic M, Gibbons GW, Pope CN (2011b) More about Birkhoff’s invariant and Thorne’s hoop conjecture for horizons. Class Quantum Grav 28:195001. https://doi.org/10.1088/0264-9381/28/19/195001. arXiv:1104.4504
Dafermos M (2005) Spherically symmetric space-times with a trapped surface. Class Quantum Grav 22:2221–2232. https://doi.org/10.1088/0264-9381/22/11/019. arXiv:gr-qc/0403032
Dain S (2004) Trapped surfaces as boundaries for the constraint equations. Class Quantum Grav 21:555–573 arXiv:gr-qc/0308009
Dain S (2006a) Angular momemtum–mass inequality for axisymmetric black holes. Phys Rev Lett 96:101101 arXiv:gr-qc/0511101
Dain S (2006b) Proof of the (local) angular momemtum–mass inequality for axisymmetric black holes. Class Quantum Grav 23:6845–6855 arXiv:gr-qc/0511087
Dain S (2006c) A variational principle for stationary, axisymmetric solutions of Einstein’s equations. Class Quantum Grav 23:6857–6871 arXiv:gr-qc/0508061
Dain S (2008) Proof of the angular momentum–mass inequality for axisymmetric black holes. J Differ Geom 79:33–67 arXiv:gr-qc/0606105
Dain S (2010) Extreme throat initial data set and horizon area–angular momentum inequality for axisymmetric black holes. Phys Rev D 82:104010. https://doi.org/10.1103/PhysRevD.82.104010. arXiv:1008.0019
Dain S (2011) Geometric inequalities for axially symmetric black holes. ArXiv e-prints arXiv:1111.3615
Dain S (2012) Geometric inequalities for axially symmetric black holes. Class Quantum Grav 29:073001. https://doi.org/10.1088/0264-9381/29/7/073001. arXiv:1111.3615
Dain S (2014a) Geometric inequalities for black holes. Gen Relativ Gravit 46:1715. https://doi.org/10.1007/s10714-014-1715-1. arXiv:1401.8166
Dain S (2014b) Inequality between size and angular momentum for bodies. Phys Rev Lett 112:041101. https://doi.org/10.1103/PhysRevLett.112.041101. arXiv:1305.6645
Dain S, Ortiz OE (2009) Numerical evidences for the angular momentum–mass inequality for multiple axially symmetric black holes. Phys Rev D 80:024045. https://doi.org/10.1103/PhysRevD.80.024045. arXiv:0905.0708
Dain S, Reiris M (2011) Area–angular-momentum inequality for axisymmetric black holes. Phys Rev Lett 107:051101. https://doi.org/10.1103/PhysRevLett.107.051101. arXiv:1102.5215
Dain S, Jaramillo JL, Reiris M (2012) Area–charge inequality for black holes. Class Quantum Grav 29:035013 arXiv:1109.5602
Eichmair M (2007) The plateau problem for apparent horizons. J Differ Geom. https://doi.org/10.4310/jdg/1264601035. arXiv:0711.4139
Eichmair M, Metzger J (2013a) Large isoperimetric surfaces in initial data sets. J Differ Geom 94:159–186. https://doi.org/10.4310/jdg/1361889064. arXiv:1102.2999
Eichmair M, Metzger J (2013b) Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent Math 194:591. https://doi.org/10.1007/s00222-013-0452-5. arXiv:1204.6065
Eichmair M, Galloway GJ, Pollack D (2013) Topological censorship from the initial data point of view. J Differ Geom 95:389–405. https://doi.org/10.4310/jdg/1381931733. arXiv:1204.0278
Epp RJ, McGrath PL, Mann RB (2013) Momentum in general relativity: local versus quasilocal conservation laws. Class Quantum Grav 30:195019. https://doi.org/10.1088/0264-9381/30/19/195019. arXiv:1306.5500
Ernst FJ (1968) New formulation of the axially symmetric gravitational field problem. Phys Rev 167:1175–1179. https://doi.org/10.1103/PhysRev.168.1415
Fajman D, Simon W (2014) Area inequalities for stable marginally outer trapped surfaces in Einstein–Maxwell-dilaton theory. Adv Theor Math Phys 18:687–707. https://doi.org/10.4310/ATMP.2014.v18.n3.a4. arXiv:1308.3659
Gabach Clément ME (2011) Comment on “Horizon area–angular momentum inequality for a class of axially symmetric black holes”. ArXiv e-prints arXiv:1102.3834
Gabach Clément ME (2012) Bounds on the force between black holes. Class Quantum Grav 29:165008. https://doi.org/10.1088/0264-9381/29/16/165008. arXiv:1201.4099
Gabach Clément ME, Jaramillo JL (2012) Black hole area–angular momentum–charge inequality in dynamical non-vacuum spacetimes. Phys Rev D 86:064021. https://doi.org/10.1103/PhysRevD.86.064021. arXiv:1111.6248
Gabach Clément ME, Reiris M (2013) On the shape of rotating black-holes. Phys Rev D 88:044031. https://doi.org/10.1103/PhysRevD.88.044031. arXiv:1306.1019
Gabach Clément ME, Jaramillo JL, Reiris M (2013) Proof of the area–angular momentum–charge inequality for axisymmetric black holes. Class Quantum Grav 30:065017. https://doi.org/10.1088/0264-9381/30/6/065017. arXiv:1207.6761
Gabach Clément ME, Reiris M, Simon W (2015) The area–angular momentum inequality for black holes in cosmological spacetimes. Class Quantum Grav 32:145006. https://doi.org/10.1088/0264-9381/32/14/145006. arXiv:1501.07243
Galloway GJ, O’Murchadha N (2008) Some remarks on the size of bodies and black holes. Class Quantum Grav 25:105009. https://doi.org/10.1088/0264-9381/25/10/105009. arXiv:0802.3247
Gannon D (1975) Singularities in nonsimply connected space-times. J Math Phys 16:2364–2367. https://doi.org/10.1063/1.522498
Gannon D (1976) On the topology of spacelike hypersurfaces, singularities, and black holes. Gen Relativ Gravit 7:219–232. https://doi.org/10.1007/BF00763437
Gibbons GW (1984) The isoperimetric and Bogomolny inequalities for black holes. In: Willmore TJ, Hitchin N (eds) Global Riemannian geometry. Wiley, New York, pp 194–202
Gibbons GW (1997) Collapsing shells and the isoperimetric inequality for black holes. Class Quantum Grav 14:2905–2915. https://doi.org/10.1088/0264-9381/14/10/016
Gibbons GW (1999) Some comments on gravitational entropy and the inverse mean curvature flow. Class Quantum Grav 16:1677–1687. https://doi.org/10.1088/0264-9381/16/6/302. arXiv:hep-th/9809167
Gibbons GW (2009) Birkhoff’s invariant and Thorne’s hoop conjecture. ArXiv e-prints arXiv:0903.1580
Gibbons GW, Holzegel G (2006) The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions. Class Quantum Grav 23:6459–6478. https://doi.org/10.1088/0264-9381/23/22/022. arXiv:gr-qc/0606116
Gibbons GW, Hull CM (1982) A Bogomolny bound for general relativity and solitons in \(N=2\) supergravity. Phys Lett B 109:190–194. https://doi.org/10.1016/0370-2693(82)90751-1
Gibbons GW, Hawking SW, Horowitz GT, Perry MJ (1983) Positive mass theorems for black holes. Commun Math Phys 88:295–308. https://doi.org/10.1007/BF01213209
Gibbons GW, Kallosh R, Kol B (1996) Moduli, scalar charges, and the first law of black hole thermodynamics. Phys Rev Lett 77:4992–4995. https://doi.org/10.1103/PhysRevLett.77.4992. arXiv:hep-th/9607108
Hájiček P (1974) Three remarks on axisymmetric stationary horizons. Commun Math Phys 36:305–320. https://doi.org/10.1007/BF01646202
Hartle JB, Hawking SW (1972) Solutions of the Einstein–Maxwell equations with many black holes. Commun Math Phys 26:87–101. https://doi.org/10.1007/BF01645696
Hawking SW (1971) Gravitational radiation from collidings black holes. Phys Rev Lett 26:1344–1346. https://doi.org/10.1103/PhysRevLett.26.1344
Hayward SA (2011) Involute, minimal, outer and increasingly trapped surfaces. Int J Mod Phys D 20:401–411. https://doi.org/10.1142/S0218271811018718. arXiv:0906.2528
Hayward SA, Shiromizu T, Nakao K (1994) A cosmological constant limits the size of black holes. Phys Rev D 49:5080–5085. https://doi.org/10.1103/PhysRevD.49.5080. arXiv:gr-qc/9309004
Hennig J (2014) Geometric relations for rotating and charged AdS black holes. Class Quantum Grav 31:135005. https://doi.org/10.1088/0264-9381/31/13/135005. arXiv:1402.5198
Hennig J, Ansorg M (2009) The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein–Maxwell theory: study in terms of soliton methods. Ann Henri Poincaré 10:1075–1095. https://doi.org/10.1007/s00023-009-0012-0. arXiv:0904.2071
Hennig J, Neugebauer G (2011) Non-existence of stationary two-black-hole configurations: the degenerate case. Gen Relativ Gravit 43:3139–3162. https://doi.org/10.1007/s10714-011-1228-0. arXiv:1103.5248
Hennig J, Ansorg M, Cederbaum C (2008) A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter. Class Quantum Grav 25:162002. https://doi.org/10.1088/0264-9381/25/16/162002
Hennig J, Cederbaum C, Ansorg M (2010) A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein–Maxwell theory. Commun Math Phys 293:449–467. https://doi.org/10.1007/s00220-009-0889-y. arXiv:0812.2811
Herzlich M (1998) The positive mass theorem for black holes revisited. J Geom Phys 26:97–111. https://doi.org/10.1016/S0393-0440(97)00040-5
Hildebrandt S, Kaul H, Widman KO (1977) An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math 138:1–16. https://doi.org/10.1007/BF02392311
Hod S (2015) Bekenstein’s generalized second law of thermodynamics: the role of the hoop conjecture. Phys Lett B 751:241–245. https://doi.org/10.1016/j.physletb.2015.10.052. arXiv:1511.03665
Hollands S (2012) Horizon area–angular momentum inequality in higher dimensional spacetimes. Class Quantum Grav 29:065006. https://doi.org/10.1088/0264-9381/29/6/065006. arXiv:1110.5814
Horowitz GT (1984) The positive energy theorem and its extensions. In: Flaherty FJ (ed) Asymptotic behavior of mass and spacetime geometry. Lecture notes in physics, vol 202. Springer, Berlin, pp 1–21. https://doi.org/10.1007/BFb0048063
Huang LH, Schoen R, Wang MT (2011) Specifying angular momentum and center of mass for vacuum initial data sets. Commun Math Phys 306:785–803. https://doi.org/10.1007/s00220-011-1295-9. arXiv:1008.4996
Huisken G (1998) Evolution of hypersurfaces by their curvature in Riemannian manifolds. In: Rehmann U (ed) Proceedings of the international congress of mathematicians (ICM), vol II, Bielefeld. Documenta mathematica, extra volume, pp 349–360. http://eudml.org/doc/227789
Huisken G, Ilmanen T (2001) The inverse mean curvature flow and the Riemannian Penrose inequality. J Differ Geom 59:352–437. https://doi.org/10.4310/jdg/1090349447
Immerman JD, Baumgarte TW (2009) Trumpet-puncture initial data for black holes. Phys Rev D 80:061501. https://doi.org/10.1103/PhysRevD.80.061501. arXiv:0908.0337
Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, Hoboken
Jaramillo JL (2013) Area inequalities for stable marginally trapped surfaces. In: Sánchez M, Ortega M, Romero A (eds) Recent trends in Lorentzian geometry. Springer proceedings in mathematics and statistics, vol 26. Springer, New York, pp 139–161. https://doi.org/10.1007/978-1-4614-4897-6_5. arXiv:1201.2054
Jaramillo JL, Gourgoulhon E, Cordero-Carrion I, Ibanez JM (2008) Trapping horizons as inner boundary conditions for black hole spacetimes. Phys Rev D 77:047501. https://doi.org/10.1103/PhysRevD.77.047501. arXiv:0709.2842
Jaramillo JL, Reiris M, Dain S (2011) Black hole area–angular momentum inequality in non-vacuum spacetimes. Phys Rev D 84:121503. https://doi.org/10.1103/PhysRevD.84.121503. arXiv:1106.3743
Khuri M, Weinstein G (2016) The positive mass theorem for multiple rotating charged black holes. Calc Var 55:33. https://doi.org/10.1007/s00526-016-0969-8. arXiv:1502.06290
Khuri M, Weinstein G, Yamada S (2017) Proof of the Riemannian Penrose inequality with charge for multiple black holes. J Differ Geom 106:451–498. https://doi.org/10.4310/jdg/1500084023. arXiv:1409.3271
Khuri MA (2009) The hoop conjecture in spherically symmetric spacetimes. Phys Rev D 80:124025. https://doi.org/10.1103/PhysRevD.80.124025. arXiv:0912.3533
Khuri MA (2015a) Existence of black holes due to concentration of angular momentum. JHEP 2015(06):188. https://doi.org/10.1007/JHEP06(2015)188. arXiv:1503.06166
Khuri MA (2015b) Inequalities between size and charge for bodies and the existence of black holes due to concentration of charge. J Math Phys 56:112503. https://doi.org/10.1063/1.4936149. arXiv:1505.04516
Khuri MA, Weinstein G (2013) Rigidity in the positive mass theorem with charge. J Math Phys 54:092501. https://doi.org/10.1063/1.4820469. arXiv:1307.5499
Komar A (1959) Covariant conservation laws in general relativity. Phys Rev 113:934–936. https://doi.org/10.1103/PhysRev.113.934
Kunduri HK, Lucietti J (2009) A classification of near-horizon geometries of extremal vacuum black holes. J Math Phys 50:082502. https://doi.org/10.1063/1.3190480. arXiv:0806.2051
Kunduri HK, Lucietti J (2013) Classification of near-horizon geometries of extremal black holes. Living Rev Relativ 16:8. https://doi.org/10.12942/lrr-2013-8. arXiv:1306.2517
Lee C (1976) A restriction on the topology of Cauchy surfaces in general relativity. Commun Math Phys 51:157. https://doi.org/10.1007/BF01609346
Lewandowski J, Pawlowski T (2003) Extremal isolated horizons: a local uniqueness theorem. Class Quantum Grav 20:587–606. https://doi.org/10.1088/0264-9381/20/4/303. arXiv:gr-qc/0208032
Maeda K, Koike T, Narita M, Ishibashi A (1998) Upper bound for entropy in asymptotically de Sitter space-time. Phys Rev D 57:3503–3508. https://doi.org/10.1103/PhysRevD.57.3503. arXiv:gr-qc/9712029
Maerten D (2006) Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds. Ann Henri Poincaré 7:975–1011. https://doi.org/10.1007/s00023-006-0273-9
Majumdar SD (1947) A class of exact solutions of Einstein’s field equations. Phys Rev 72:390. https://doi.org/10.1103/PhysRev.72.390
Malec E (1992) Isoperimetric inequalities in the physics of black holes. Acta Phys Pol B 22:829
Malec E, Xie N (2015) Brown-York mass and the hoop conjecture in nonspherical massive systems. Phys Rev D 91:081501. https://doi.org/10.1103/PhysRevD.91.081501. arXiv:1503.01354
Malec E, Mars M, Simon W (2002) On the Penrose inequality for general horizons. Phys Rev Lett 88:121102. https://doi.org/10.1103/PhysRevLett.88.121102. arXiv:gr-qc/0201024
Manko VS, Ruiz E (2001) Exact solution of the double-Kerr equilibrium problem. Class Quantum Grav 18:L11–L15. https://doi.org/10.1088/0264-9381/18/2/102
Manko VS, Ruiz E, Sadovnikova MB (2011) Stationary configurations of two extreme black holes obtainable from the Kinnersley–Chitre solution. Phys Rev D 84:064005. https://doi.org/10.1103/PhysRevD.84.064005. arXiv:1105.2646
Manko VS, Rabadan RI, Ruiz E (2013) The Breton–Manko equatorially antisymmetric binary configuration revisited. Class Quantum Grav 30:145005. https://doi.org/10.1088/0264-9381/30/14/145005. arXiv:1302.7110
Manko VS, Rabadán RI, Sanabria-Gómez JD (2014) Stationary black diholes. Phys Rev D 89(6):064049. https://doi.org/10.1103/PhysRevD.89.064049. arXiv:1311.2326
Mars M (2009) Present status of the Penrose inequality. Class Quantum Grav 26:193001. https://doi.org/10.1088/0264-9381/26/19/193001. arXiv:0906.5566
Mars M (2014) Stability of marginally outer trapped surfaces and geometric inequalities. In: Bičák J, Ledvinka T (eds) General relativity, cosmology and astrophysics: perspectives 100 years after Einstein’s stay in Prague. Fundamental theories of physics, vol 177. Springer, Cham, pp 191–208. https://doi.org/10.1007/978-3-319-06349-2_8
Mars M, Senovilla JMM (1993) Axial symmetry and conformal Killing vectors. Class Quantum Grav 10:1633–1647. https://doi.org/10.1088/0264-9381/10/8/020. arXiv:gr-qc/0201045
Meeks W III, Simon L, Yau ST (1982) Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature. Ann Math 2(116):621–659. https://doi.org/10.2307/2007026
Moreschi OM, Sparling GAJ (1984) On the positive energy theorem involving mass and electromagnetic charges. Commun Math Phys 95:113–120. https://doi.org/10.1007/BF01215757
Murchadha NO (1986) How large can a star be? Phys Rev Lett 57:2466–2469. https://doi.org/10.1103/PhysRevLett.57.2466
Murchadha NO, Tung RS, Xie N, Malec E (2010) The Brown-York mass and the Thorne hoop conjecture. Phys Rev Lett 104:041101. https://doi.org/10.1103/PhysRevLett.104.041101. arXiv:0912.4001
Nester JM, Meng FF, Chen CM (2004) Quasilocal center-of-mass. J Korean Phys Soc 45:S22–S25. https://doi.org/10.3938/jkps.45.22. arXiv:gr-qc/0403103
Neugebauer G, Hennig J (2009) Non-existence of stationary two-black-hole configurations. Gen Relativ Gravit 41:2113–2130. https://doi.org/10.1007/s10714-009-0840-8. arXiv:0905.4179
Neugebauer G, Hennig J (2012) Stationary two-black-hole configurations: a non-existence proof. J Geom Phys 62:613–630. https://doi.org/10.1016/j.geomphys.2011.05.008. arXiv:1105.5830
Neugebauer G, Hennig J (2014) Stationary black-hole binaries: a non-existence proof. In: Bičák J, Ledvinka T (eds) General relativity, cosmology and astrophysics: perspectives 100 years after Einstein’s stay in Prague. Fundamental theories of physics, vol 177. Springer, Cham, pp 209–228. https://doi.org/10.1007/978-3-319-06349-2_9. arXiv:1302.0573
Nordström G (1918) On the energy of the gravitational field in Einstein’s theory. Verhandl Koninkl Ned Akad Wetenschap, Afdel Natuurk, Amsterdam 26:1201–1208
Papapetrou A (1945) A static solution of the equations of the gravitational field for an arbitrary charge-distribution. Proc R Irish Acad A 51:191–204
Penrose R (1965) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57–59. https://doi.org/10.1103/PhysRevLett.14.57
Penrose R (1973) Naked singularities. Ann NY Acad Sci 224:125–134. https://doi.org/10.1111/j.1749-6632.1973.tb41447.x
Penrose R, Floyd RM (1971) Extraction of rotational energy from a black hole. Nature 229:177–179. https://doi.org/10.1038/physci229177a0
Reiris M (2014a) On extreme Kerr-throats and zero temperature black holes. Class Quantum Grav 31:025001. https://doi.org/10.1088/0264-9381/31/2/025001. arXiv:1209.4530
Reiris M (2014b) On the shape of bodies in general relativistic regimes. Gen Relativ Gravit 46:1777. https://doi.org/10.1007/s10714-014-1777-0. arXiv:1406.6938
Reissner H (1916) Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann Phys 50:106–120. https://doi.org/10.1002/andp.19163550905
Rogatko M (2014) Mass angular momentum and charge inequalities for black holes in Einstein–Maxwell-axion–dilaton gravity. Phys Rev D 89:044020. https://doi.org/10.1103/PhysRevD.89.044020. arXiv:1402.3376
Rogatko M (2017) Angular momentum, mass and charge inequalities for black holes in Einstein–Maxwell gravity with dark matter sector. ArXiv e-prints arXiv:1701.07643
Schoen R, Yau ST (1979) On the proof of the positive mass conjecture in general relativity. Commun Math Phys 65:45–76. https://doi.org/10.1007/BF01940959
Schoen R, Yau ST (1981) Proof of the positive mass theorem. II. Commun Math Phys 79:231–260. https://doi.org/10.1007/BF01942062
Schoen R, Yau ST (1983) The existence of a black hole due to condensation of matter. Commun Math Phys 90:575–579. https://doi.org/10.1007/BF01216187. https://projecteuclid.org/euclid.cmp/1103940419
Schoen R, Yau S (2017) Positive scalar curvature and minimal hypersurface singularities. ArXiv e-prints arXiv:1704.05490
Schoen R, Zhou X (2013) Convexity of reduced energy and mass angular momentum inequalities. Ann Henri Poincaré 14:1747–1773. https://doi.org/10.1007/s00023-013-0240-1
Senovilla JMM (2008) A reformulation of the hoop conjecture. Europhys Lett 81:20004. https://doi.org/10.1209/0295-5075/81/20004. arXiv:0709.0695
Senovilla JMM (2011) Trapped surfaces. Int J Mod Phys D 20:2139. https://doi.org/10.1142/S0218271811020354. arXiv:1107.1344
Senovilla JMM, Garfinkle D (2015) The 1965 Penrose singularity theorem. Class Quantum Grav 32:124008. https://doi.org/10.1088/0264-9381/32/12/124008. arXiv:1410.5226
Shiromizu T, Nakao K, Kodama H, Maeda KI (1993) Can large black holes collide in de Sitter space-time? An inflationary scenario of an inhomogeneous universe. Phys Rev D 47:R3099–R3102. https://doi.org/10.1103/PhysRevD.47.R3099
Simon W (2012) Bounds on area and charge for marginally trapped surfaces with a cosmological constant. Class Quantum Grav 29:062001. https://doi.org/10.1088/0264-9381/29/6/062001. arXiv:1109.6140
Sorce J, Wald RM (2017) Gedanken experiments to destroy a black hole. II. Kerr–Newman black holes cannot be overcharged or overspun. Phys Rev D 96(10):104014. https://doi.org/10.1103/PhysRevD.96.104014. arXiv:1707.05862
Szabados LB (2004) Quasi-local energy-momentum and angular momentum in GR: a review article. Living Rev Relativ 7:4. https://doi.org/10.12942/lrr-2004-4
Thorne KS (1972) Nonspherical gravitational collapse: a short review. In: Klauder J (ed) Magic without magic: John Archibald Wheeler. A collection of essays in honor of his sixtieth birthday. W.H. Freeman, San Francisco, pp 231–258
Tod KP (1983) All metrics admitting supercovariantly constant spinors. Phys Lett B 121:241–244. https://doi.org/10.1016/0370-2693(83)90797-9
Tung RS (2009) Energy and angular momentum in strong gravitating systems. Int J Mod Phys A A24:3538–3544. https://doi.org/10.1142/S0217751X09047168. arXiv:0903.1036
Visser M (2013) Area products for black hole horizons. Phys Rev D 88:044014. https://doi.org/10.1103/PhysRevD.88.044014. arXiv:1205.6814
Wald R (1999) Gravitational collapse and cosmic censorship. In: Iyer BR, Bhawal B (eds) Black holes, gravitational radiation and the universe. Fundamental theories of physics, vol 100. Kluwer Academic, Dordrecht, pp 69–85. https://doi.org/10.1007/978-94-017-0934-7_5. arXiv:gr-qc/9710068
Wald RM (1984) General relativity. The University of Chicago Press, Chicago
Wald RM (2001) The thermodynamics of black holes. Living Rev Relativ 4:6. https://doi.org/10.12942/lrr-2001-6. arXiv:gr-qc/9912119
Wali KC (1982) Chandrasekhar vs. Eddington—an unanticipated confrontation. Phys Today 35:33. https://doi.org/10.1063/1.2914790
Weinstein G (1996) \(N\) black hole stationary and axially symmetric solutions of the Einstein–Maxwell equations. Commun Part Diff Eq 21:1389–1430. https://doi.org/10.1080/03605309608821232. arXiv:gr-qc/9412036
Wieland W (2017) Quasi-local gravitational angular momentum and centre of mass from generalised Witten equations. Gen Relativ Gravit 49:38. https://doi.org/10.1007/s10714-017-2200-4. arXiv:1604.07428
Witten E (1981) A new proof of the positive energy theorem. Commun Math Phys 80:381–402. https://doi.org/10.1007/BF01208277
Woolgar E (1999) Bounded area theorems for higher genus black holes. Class Quantum Grav 16:3005–3012. https://doi.org/10.1088/0264-9381/16/9/316. arXiv:gr-qc/9906096
Yazadjiev S (2013a) Horizon area–angular momentum–charge–magnetic fluxes inequalities in 5D Einstein–Maxwell-dilaton gravity. Class Quantum Grav 30:115010. https://doi.org/10.1088/0264-9381/30/11/115010. arXiv:1301.1548
Yazadjiev SS (2013b) Area–angular momentum–charge inequality for stable marginally outer trapped surfaces in 4D Einstein–Maxwell-dilaton theory. Phys Rev D 87:024016. https://doi.org/10.1103/PhysRevD.87.024016. arXiv:1210.4684
Yodzis P, Seifert HJ, Müller zum Hagen H (1973) On the occurrence of naked singularities in general relativity. Commun Math Phys 34:135–148. https://doi.org/10.1007/BF01646443
Yoon JH (2004) New Hamiltonian formalism and quasilocal conservation equations of general relativity. Phys Rev D 70:084037. https://doi.org/10.1103/PhysRevD.70.084037. arXiv:gr-qc/0406047
Yoshino H (2008) Highly distorted apparent horizons and the hoop conjecture. Phys Rev D 77:041501. https://doi.org/10.1103/PhysRevD.77.041501. arXiv:0712.3907
Zangwill A (2013) Modern electrodynamics. Cambridge University Press, Cambridge
Zhang X (1999) Angular momentum and positive mass theorem. Commun Math Phys 206:137–155. https://doi.org/10.1007/s002200050700
Zhou X (2012) Mass angular momentum inequality for axisymmetric vacuum data with small trace. ArXiv e-prints arXiv:1209.1605