Geometrical characterization of weakly efficient points

Journal of Optimization Theory and Applications - Tập 90 - Trang 217-223 - 1996
F. Plastria1, E. Carrizosa2
1Centre for Industrial Location and Development, Vrije Universiteit Brussel, Brussels, Belgium
2Facultad de Matemáticas, Universidad de Sevilla, Sevilla, Spain

Tóm tắt

In this note, we present a geometrical characterization of the set of weakly efficient points in constrained convex multiobjective optimization problems, valid for a compact set of objectives.

Tài liệu tham khảo

Lin, J. G.,Maximal Vector and Multiobjective Optimization, Journal of Optimization Theory and Applications, Vol. 18, pp. 41–64, 1976. Sawaragi, S., Nakayama, H., andTanino, T.,Theory of Multiobjective Optimization, Academic Press, New York, New York, 1985. Singh, C.,Optimality Conditions in Multiobjective Differentiable Programming, Journal of Optimization Theory and Applications, Vol. 53, pp. 115–123, 1987. Swartz, C.,Pshenichnyi's Theorem for Vector Minimization, Journal of Optimization Theory and Applications, Vol. 53, pp. 309–317, 1987. Wang, S. Y., andYang, F. M.,A Gap between Multiobjective Optimization and Scalar Optimization, Journal of Optimization Theory and Applications, Vol. 68, pp. 389–391, 1991. Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. Brøndsted, A.,An Introduction to Convex Polytopes, Springer Verlag, Berlin, Germany, 1983. Lowe, T. J., Thisse, J. F., Ward, J. E., andWendell, R. E.,On Efficient Solutions to Multiple-Objective Mathematical Programs, Management Science, Vol. 30, pp. 1346–1349, 1984.