Geometric tuning of energy storage in barium titanate/strontium titanate nanocomposites
Tóm tắt
Từ khóa
Tài liệu tham khảo
<li>H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, ''On the challenge of developing advanced technologies for electrochemical energy storage and conversion'', <em>Materials Today</em>, vol. 17, no. 3, pp. 110-121, 2014. https://doi.org/10.1016/j.mattod.2014.02.014</li>
<li>Y. Huang <em>et al.</em>, ''Multifunctional energy storage and conversion devices'', <em>Advanced Materials</em>, vol. 28, no. 38, pp. 8344-8364, 2016. https://doi.org/10.1002/adma.201601928</li>
<li>S.L. Candelaria <em>et al.</em>, ''Nanostructured carbon for energy storage and conversion'', <em>Nano Energy</em>, vol. 1, no. 2, pp. 195-220, 2012. https://doi.org/10.1016/j.nanoen.2011.11.006</li>
<li>H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, and J. Ryu, ''High‐performance dielectric ceramic films for energy storage capacitors: progress and outlook'', <em>Advanced Functional Materials</em>, vol. 28, no. 42, pp. 1803665, 2018. https://doi.org/10.1002/adfm.201803665</li>
<li>L. Yang <em>et al.</em>, ''Perovskite lead-free dielectrics for energy storage applications'', <em>Progress in Materials Science</em>, vol. 102, pp. 72-108, 2019. https://doi.org/10.1016/j.pmatsci.2018.12.005</li>
<li>H. Huang and J.F. Scott, <em>Ferroelectric Materials for Energy Applications</em>, John Wiley & Sons, 2018.</li>
<li>Z. Lu <em>et al.</em>, ''Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics'', <em>Nano Energy</em>, vol. 79, pp. 105423, 2021. https://doi.org/10.1016/j.nanoen.2020.105423</li>
<li>Z. Lu <em>et al.</em>, ''Superior energy density through tailored dopant strategies in multilayer ceramic capacitors'', <em>Energy & Environmental Science</em>, vol. 13, no. 9, pp. 2938-2948, 2020. DOI: 10.1039/D0EE02104K</li>
<li>H. Ji <em>et al.</em>, ''Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation'', <em>Energy Storage Materials</em>, vol. 38, pp. 113-120, 2021. https://doi.org/10.1016/j.ensm.2021.01.023</li>
<li>H. Ye <em>et al.</em>, ''Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications'', <em>Acta Materialia</em>, vol. 203, pp. 116484, 2021. https://doi.org/10.1016/j.actamat.2020.116484</li>
<li>J. Chen, H. Qi, and R. Zuo, ''Realizing Stable Relaxor Antiferroelectric and Superior Energy Storage Properties in (Na1-x/2La x/2)(Nb1-xTix)O3 Lead-Free Ceramics through A/B-Site Complex Substitution'', <em>ACS Applied Materials & Interfaces</em>, vol. 12, no. 29, pp. 32871-32879, 2020. https://doi.org/10.1021/acsami.0c09876</li>
<li>Z. Yang <em>et al.</em>, ''Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties'', <em>Nano Energy</em>, vol. 58, pp. 768-777, 2019. https://doi.org/10.1016/j.nanoen.2019.02.003</li>
<li>H. Pan <em>et al.</em>, ''Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering'', <em>Nature Communications</em>, vol. 9, no. 1, pp. 1813, 2018. https://doi.org/10.1038/s41467-018-04189-6</li>
<li>H. Qi, A. Xie, A. Tian, and R. Zuo, ''Superior energy‐storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 lead‐free bulk ferroelectrics'', <em>Advanced Energy Materials</em>, vol. 10, no. 6, pp. 1903338, 2020. https://doi.org/10.1002/aenm.201903338</li>
<li>Q. Wang <em>et al.</em>, ''Bi0.5Na0.5TiO3-based relaxor-ferroelectric ceramics for low-electric-field dielectric energy storage via bidirectional optimization strategy'', <em>Chemical Engineering Journal</em>, vol. 452, pp. 139422, 2023. https://doi.org/10.1016/j.cej.2022.139422</li>
<li>Q. Zheng, B. Xie, Y. Tian, Q. Wang, H. Luo, Z. Liu, and H. Zhang, ''High recoverable energy density of Na0.5Bi0.5TiO3-based ceramics by multi-scale insulation regulation and relaxor optimization strategy'', <em>Journal of Materiomics</em>, vol. 10, no. 4, pp. 845-856, 2024. https://doi.org/10.1016/j.jmat.2023.10.005</li>
<li>H. Pan, A. Kursumovic, Y.-H. Lin, C.-W. Nan, and J. L. MacManus-Driscoll, ''Dielectric films for high performance capacitive energy storage: multiscale engineering'', <em>Nanoscale</em>, vol. 12, no. 38, pp. 19582-19591, 2020. DOI: 10.1039/D0NR05709F</li>
<li>X. Lv, X.-x. Zhang, and J. Wu, ''Nano-domains in lead-free piezoceramics: a review'', <em>Journal of Materials Chemistry A</em>, vol. 8, no. 20, pp. 10026-10073, 2020. https://doi.org/10.1039/D0TA03201H</li>
<li>B. Ma, Z. Hu, R.E. Koritala, T.H. Lee, S.E. Dorris, and U. Balachandran, ''PLZT film capacitors for power electronics and energy storage applications'', <em>Journal of Materials Science: Materials in Electronics</em>, vol. 26, no. 12, pp. 9279-9287, 2015. https://doi.org/10.1007/s10854-015-3025-0</li>
<li>H. Pan <em>et al.</em>, ''Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design'', <em>Science</em>, vol. 365, no. 6453, pp. 578-582, 2019. DOI: 10.1126/science.aaw8109</li>
<li>J. Kim <em>et al.</em>, ''Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films'', <em>Science</em>, vol. 369, no. 6499, pp. 81-84, 2020. DOI: 10.1126/science.abb0631</li>
<li>H. Pan <em>et al.</em>, ''Ultrahigh energy storage in superparaelectric relaxor ferroelectrics'', <em>Science</em>, vol. 374, no. 6563, pp. 100-104, 2021. DOI: 10.1126/science.abi7687</li>
<li>J. Cai <em>et al.</em>, ''Design and preparation of ternary polymer nanocomposites for high energy density film capacitors'', <em>Composites Science & Technology</em>, vol. 245, pp. 110361, 2024. https://doi.org/10.1016/j.compscitech.2023.110361</li>
<li>R. Kang <em>et al.</em>, ''Domain engineered lead-free ceramics with large energy storage density and ultra-high efficiency under low electric fields'', <em>ACS Applied Materials & Interfaces</em>, vol. 13, no. 21, pp. 25143-25152, 2021. https://doi.org/10.1021/acsami.1c05824</li>
<li>D. Zheng, R. Zuo, D. Zhang, and Y. Li, ''Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead‐free relaxor ferroelectric ceramics for energy‐storage capacitors'', <em>Journal of the American Ceramic Society</em>, vol. 98, no. 9, pp. 2692-2695, 2015. https://doi.org/10.1111/jace.13737</li>
<li>D. Zheng and R. Zuo, ''Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range'', <em>Journal of the European Ceramic Society</em>, vol. 37, no. 1, pp. 413-418, 2017. https://doi.org/10.1016/j.jeurceramsoc.2016.08.021</li>
<li>Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, and X. Wei, ''Dielectric and temperature stable energy storage properties of 0.88BaTiO3–0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics'', <em>Journal of Alloys & Compounds</em>, vol. 640, pp. 416-420, 2015. https://doi.org/10.1016/j.jallcom.2015.02.225</li>
<li>M. Peddigari <em>et al.</em>, ''Boosting the recoverable energy density of lead-free ferroelectric ceramic thick films through artificially induced quasi-relaxor behavior'', <em>ACS Applied Materials & Interfaces</em>, vol. 10, no. 24, pp. 20720-20727, 2018. https://doi.org/10.1021/acsami.8b05347</li>
<li>Z. Yang <em>et al.</em>, ''Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics'', <em>Journal of Materials Chemistry A</em>, vol. 4, no. 36, pp. 13778-13785, 2016. https://doi.org/10.1039/C6TA04107H</li>
<li>T. Shao <em>et al.</em>, ''Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials'', <em>Journal of Materials Chemistry A</em>, vol. 5, no. 2, pp. 554-563, 2017. https://doi.org/10.1039/C6TA07803F</li>
<li>B.-H. Vu, D.T.H. Hue, T. Shimada, V.-H. Dinh, and M.-H. Phan, ''Low-field energy storage enhancement in ferroelectric/paraelectric PbTiO3/SrTiO3 nanocomposites near antiferroelectric–ferroelectric transition region'', <em>Journal of Science: Advanced Materials & Devices</em>, vol. 9, no. 2, pp. 100687, 2024. https://doi.org/10.1016/j.jsamd.2024.100687</li>
<li>N. Pertsev, A. Tagantsev, and N. Setter, ''Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films'', <em>Physical Review B</em>, vol. 61, no. 2, pp. R825, 2000. https://doi.org/10.1103/PhysRevB.61.R825</li>
<li>J. Wang, X. Ma, Q. Li, J. Britson, and L.-Q. Chen, ''Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity'', <em>Acta Materialia</em>, vol. 61, no. 20, pp. 7591-7603, 2013. https://doi.org/10.1016/j.actamat.2013.08.055</li>
<li>H. T. Dang and V.-H. Dinh, ''Polar toron structure in ferroelectric core-shell nanoparticles'', <em>Scripta Materialia</em>, vol. 236, pp. 115641, 2023. https://doi.org/10.1016/j.scriptamat.2023.115641</li>
<li>A. Schilling <em>et al.</em>, ''Domains in ferroelectric nanodots'', <em>Nano Letters</em>, vol. 9, no. 9, pp. 3359-3364, 2009. https://doi.org/10.1021/nl901661a</li>
<li>S. Prosandeev and L. Bellaiche, ''Characteristics and signatures of dipole vortices in ferroelectric nanodots: First-principles-based simulations and analytical expressions'', <em>Physical Review B</em>, vol. 75, no. 9, pp. 094102, 2007. https://doi.org/10.1103/PhysRevB.75.094102</li>
<li>Y.H. Huang <em>et al.</em>, ''Thermodynamic and phase-field studies of phase transitions, domain structures, and switching for Ba(ZrxTi1−x)O3 solid solutions'', <em>Acta Materialia</em>, vol. 186, pp. 609-615, 2020. https://doi.org/10.1016/j.actamat.2020.01.019</li>
<li>J.-J. Wang, Y.-J. Su, B. Wang, J. Ouyang, Y.-H. Ren, and L.-Q. Chen, ''Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors'', <em>Nano Energy</em>, vol. 72, pp. 104665, 2020. https://doi.org/10.1016/j.nanoen.2020.104665</li>
<li>A. Schilling, R. Bowman, G. Catalan, J. Scott, and J. Gregg, ''Morphological control of polar orientation in single-crystal ferroelectric nanowires'', <em>Nano Letters</em>, vol. 7, no. 12, pp. 3787-3791, 2007. https://doi.org/10.1021/nl072260l</li>
<li>J. Hong, G. Catalan, D. Fang, E. Artacho, and J. Scott, ''Topology of the polarization field in ferroelectric nanowires from first principles'', <em>Physical Review B</em>, vol. 81, no. 17, pp. 172101, 2010. https://doi.org/10.1103/PhysRevB.81.172101</li>
<li>J.F. Ihlefeld, D.T. Harris, R. Keech, J. L. Jones, J. P. Maria, and S. Trolier‐McKinstry, ''Scaling effects in perovskite ferroelectrics: fundamental limits and process‐structure‐property relations'', <em>Journal of the American Ceramic Society</em>, vol. 99, no. 8, pp. 2537-2557, 2016. https://doi.org/10.1111/jace.14387</li>
