Geometric properties of the meromorphic functions class through special functions associated with a linear operator
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goodman, A.W.: Univalent Functions, I. Mariner, Tampa (1983)
Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Dekker, New York (1999)
Miller, S.S., Mocanu, P.T.: Subordinants of differential superordinations. Complex Var. Theory Appl. 48(10), 815–826 (2003)
Alexander, J.W.: Functions which map the interior of the unit circle upon simple regions. Ann. Math. 17(1), 12–22 (1915)
Pfaltzgraff, J.: Univalence of the integral of $f'(z)^{\lambda }$. Bull. Lond. Math. Soc. 7(3), 254–256 (1975)
Pascu, N.N., Pescar, V.: On integral operators of Kim–Merkes and Pfaltzgraff. Mathematica (Cluj) 32(55), 185–192 (1990)
Carlson, B.C., Shaffer, D.B.: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 15, 737–745 (1984)
Srivastava, H.M., Owa, S. (eds.): Univalent Functions, Fractional Calculus, and Their Applications Halsted, New York (1989)
Srivastava, H.M., Attiya, A.A.: An integral operator associated with the Hurwitz–Lerch zeta function and differential subordination. Integral Transforms Spec. Funct. 18(3), 207–216 (2007)
Srivastava, H.M., Saxena, R.K., Pogány, T.K., Saxena, R.: Integral and computational representations of the extended Hurwitz–Lerch zeta function. Integral Transforms Spec. Funct. 22, 487–506 (2011)
Srivastava, H.M.: The zeta and related functions: recent developments. J. Adv. Engrg. Comput. 3, 329–354 (2019)
Srivastava, H.M.: Riemann, Hurwitz and Hurwitz–Lerch zeta functions and associated series and integrals. In: Pardalos, P., Rassias, T. (eds.) Essays in Mathematics and Its Applications. Springer, Berlin (2012)
Srivastava, H.M.: Some general families of the Hurwitz–Lerch zeta functions and their applications: recent developments and directions for further researches. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 45, 234–269 (2019)
Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A, Sci. 44, 327–344 (2020)
Srivastava, H.M., Wanas, A.K., Srivastava, R.: Applications of the q-Srivastava–Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 13(1230), 1–14 (2021)
Srivastava, H.M., Raza, N., AbuJarad, E.S.A., Srivastava, G., AbuJarad, M.H.: Fekete–Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 3563–3584 (2019)
Dziok, J., Srivastava, H.M.: Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transforms Spec. Funct. 14(1), 7–18 (2003)
Ghanim, F.: A study of a certain subclass of Hurwitz–Lerch zeta function related to a linear operator. Abstr. Appl. Anal. 2013, Article ID 763756 (2013). https://doi.org/10.1155/2013/763756
Ghanim, F.: Certain properties of classes of meromorphic functions defined by a linear operator and associated with Hurwitz–Lerch zeta function. Adv. Stud. Contemp. Math. 27, 175–180 (2017)
Challab, K.A., Darus, M., Ghanim, F.: On subclass of meromorphically univalent functions defined by a linear operator associated with λ-generalized Hurwitz–Lerch zeta function and q-hypergeometric function. Ital. J. Pure Appl. Math. 39, 410–423 (2018)
Ghanim, F., Al-Shaqsi, K., Darus, M., Al-Janaby, H.F.: Subordination properties of meromorphic Kummer function correlated with Hurwitz–Lerch zeta-function. Mathematics 9, 192 (2021)
Ghanim, F., Al-Janaby, H.F.: A certain subclass of univalent meromorphic functions defined by a linear operator associated with the Hurwitz–Lerch zeta function, Rad HAZU. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 23, 71–83 (2019)
Al-Janay, H.F., Ghanim, F., Darus, M.: Some geometric properties of integral operators proposed by Hurwitz–Lerch zeta function. J. Phys. Conf. Ser. 1212, 1–6 (2019)
Al-Janaby, H.F., Ghanim, F., Darus, M.: On the third-order complex differential inequalities of ξ-generalized-Hurwitz–Lerch zeta functions. Mathematics 8, Article ID 845 (2020). https://doi.org/10.3390/math8050845
Srivastava, H.M., Jolly, N., Bansal, M.K., Jain, R.: A new integral transform associated with the λ-extended Hurwitz–Lerch zeta function. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 1679–1692 (2019)
Srivastava, H.M., Ghanim, F., El-Ashwah, R.M.: Inclusion properties of certain subclass of univalent meromorphic functions defined by a linear operator associated with the λ-generalized Hurwitz–Lerch zeta function. Bul. Acad. Ştiinţe Repub. Mold. Mat. 3(85), 34–50 (2017)
Mishra, A.K., Panigrahi, T., Mishra, R.K.: Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking. Math. Comput. Model. 57, 945–962 (2013)
Srivastava, H.M., Gaboury, S., Ghanim, F.: Partial sums of certain classes of meromorphic functions related to the Hurwitz–Lerch zeta function. Moroccan J. Pure Appl. Anal. 1, 38–50 (2015)
Srivastava, H.M., Jankov, D., Pogány, T.K., Saxena, R.K.: Two-sided inequalities for the extended Hurwitz–Lerch zeta function. Comput. Math. Appl. 62(1), 516–522 (2011)
Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)
Srivastava, H.M.: A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 13, Article ID 2294 (2021)
Srivastava, H.M., Gaboury, S., Ghanim, F.: Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the λ-generalized Hurwitz–Lerch zeta function. Integral Transforms Spec. Funct. 26(4), 258–272 (2015)
Srivastava, H.M., Gaboury, S., Ghanim, F.: Some further properties of a linear operator associated with the λ-generalized Hurwitz–Lerch zeta function related to the class of meromorphically univalent functions. Appl. Math. Comput. 259, 1019–1029 (2015)
Wilken, D.R., Feng, J.: A remark on convex and starlike functions. J. Lond. Math. Soc. s2–21(2), 287–290 (1980)
Whittaker, E.T., Watson, G.N.: A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1962)