Geometric optimal control and applications to aerospace
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agrachev, A.A, Sachkov, Y.L: Control theory from the geometric viewpoint. Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin (2004).
Agrachev, A., Sarychev, A.: On abnormal extremals for Lagrange variational problems. J. Math. Syst. Estim. Control. 1(8), 87–118 (1998).
Allgower, E., Georg, K.: Numerical continuation methods, Vol. 13. Springer-Verlag, Berlin (1990).
Allgower, E., Georg, K.: Piecewise linear methods for nonlinear equations and optimization. J Comput. Appl. Math. 124(1), 245–261 (2000).
Bischof, C., Carle, A., Kladem, P., Mauer, A.: Adifor 2.0: Automatic differentiation of Fortran 77 programs. IEEE Comput. Sci. Eng. 3, 18–32 (1996).
Betts, J.T: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998).
Betts, J.T: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. In: Advances in Design and Control, SIAM, Philadelphia (2010).
Bérend, N., Bonnans, F., Haddou, M., Laurent-Varin, J., Talbot, C.: An interior-point approach to trajectory optimization. J. Guid. Control. Dyn. 30(5), 1228–1238 (2007).
Bock, H.G, Plitt, K.J: A multiple shooting algorithm for direct solution of optimal control problem. In: Proceedings 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, Budapest, Hungary (1984).
Bolza, O.: Calculus of variations. Chelsea Publishing Co., New York (1973).
Bonnans, J.F, Hermant, A.: Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods. ESAIM Control Optim. Calc. Var. 4(14), 825–863 (2008).
Bonnans, F., Laurent-Varin, J., Martinon, P., Trélat, E.: Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher. J. Guid. Control Dyn. 1(32), 51–55 (2009).
Bonnans, F., Martinon, P., Grélard, V.: Bocop-A collection of examples (2012). http://ampl.com/products/ampl/, http://bocop.org/.
Bonnans, F., Martinon, P., Trélat, E.: Singular arcs in the generalized Goddard’s problem. J. Optim. Theory Appl. 2(139), 439–461 (2008).
Bonnard, B., Caillau, J.B, Trélat, E.: Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control. Optimisation Calc. Var. 13, 207–236 (2007).
Bonnard, B., Chyba, M.: The role of singular trajectories in control theory. Springer Verlag, New York (2003).
Bonnard, B., Faubourg, L., Launay, G., Trélat, E.: Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control. Syst. 2(9), 155–199 (2003).
Bonnard, B., Faubourg, L., Trélat, E.: Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques. Math. Models Methods Appl. Sci. 1(15), 109–140 (2005).
Bonnard, B., Faubourg, L., Trélat, E.: Mécanique céleste et contrôle des véhicules spatiaux. (French) [Celestial mechanics and the control of space vehicles] Mathématiques & Applications (Berlin) [Mathematics & Applications], 51, xiv+276 (2006).
Bonnard, B., Faubourg, L., Trélat, E.: Mécanique Céleste et Contrôle de Systèmes Spatiaux. In: Math. & Appl.,. Springer, Berlin (2006). XIV.
Bonnard, B., Trélat, E.: On the role of abnormal minimizers in SR-geometry. Ann. Fac. Sci. Toulouse (6). 10(3), 405–491 (2001).
Bonnard, B., Trélat, E.: Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale. ESAIM Control. Optim. Calc. Var. 7, 179–222 (2002).
Bryson, A.E, Ho, Y.: Applied optimal control: optimization, estimation and control. CRC Press, USA (1975).
Brunovský, P.: Every normal linear system has a regular time-optimal synthesis. Mathematica Slovaca. 28(1), 81–100 (1978).
Brunovský, P.: Existence of regular synthesis for general problems. J. Differ. Equ. 38, 317–343 (1980).
Caillau, J.B, Cots, O., Gergaud, J.: Differential continuation for regular optimal control problems. Optim. Meth. Softw. 2(27), 177–196 (2012).
Caillau, J.B, Daoud, B.: Minimum time control of the restricted three-body problem. SIAM J. Control. Optim. 50(6), 3178–3202 (2012).
Caillau, J.B, Gergaud, J., Noailles, J.: 3D geosynchronous transfer of a satellite: continuation on the thrust. J. Optim. Theory Appl. 3(118), 541–565 (2003).
Caillau, J.B, Noailles, J.: Continuous optimal control sensitivity analysis with AD, Automatic Differentiation: From Simulation to Optimization. Springer, Berlin (2002).
Caponigro, M., Piccoli, B., Rossi, F., Trélat, E.: Sparse Jurdjevic–Quinn stabilization of dissipative systems, Preprint Hal 2016, 21. to appear in in Automatica; a preprint on Hal: hal-01397843.
Cerf, M., Haberkorn, T., Trélat, E.: Continuation from a flat to a round Earth model in the coplanar orbit transfer problem. Optim. Control. Appl. Meth. 33(6), 654–675 (2012).
Cesari, L.: Optimization – Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics, Vol. 17. Verlag, Springer (1983).
Chen, Z., Caillau, J.B, Chitour, Y.: L 1-Minimization for Mechanical Systems. SIAM J. Control. Optim. 53(4) (2016).
Chitour, Y., Jean, F., Trélat, E.: Singular trajectories of control-affine systems. SIAM J. Control. Optim. 47, 1078–1095 (2008).
Chow, S.N, Mallet-Paret, J., Yorke, J.A: Finding zeros of maps: homotopy methods that are constructive with probability one. Math. Comput. 32, 887–899 (1978).
Clegern, J.B, Ostrander, M.J: Pegasus upgrades - A continuing study into an air-breathing alternative. In: 31 st AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, San Diego (1995).
Corvin, M.A: Ascent guidance for a Winged Boost Vehicle, NASA CR-172083 (1988).
Crouch, P.: Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models. IEEE Trans. Autom. Control. 4(29), 321–331 (1984).
Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II UsersŠ Manual. IWR-Preprint 2001-25, Universität Heidelberg (2001).
Denham, W.F, Bryson, A.E: Optimal programming problems with inequality constraints. 2. Solution by steepest-ascent. AIAA J. 1(2), 25–34 (1964).
Dukeman, G., Calise, A.J: Enhancements to an atmospheric ascent guidance algorithm. AIAA Pap. 5638, 1–7 (2003).
Dunn, J.C: Second-order optimality conditions in sets of L ∞ functions with range in a polyhedron. SIAM J. Control. Optim. 33, 1603–1635 (1995).
Frangos, C., Snyman, J.A: The application of parameter optimisation techniques to linear optimal control system design. Automatica. 28(1), 153–157 (1992).
Fuller, A.T: Study of an Optimum Non-Linear Control System. Int. J. Electron. 15(1), 63–71 (1963).
Gabasov, R., Kirillova, F.M: High order necessary conditions for optimality. SIAM J Control. 10(1), 127–168 (1972).
Garcia, C.B, Zangwill, W.I: An approach to homotopy and degree theory. Math. Oper. Res. 4(4), 390–405 (1979).
Gergaud, J.: Résolution numérique de problèmes de commande optimale à solution Bang-Bang par des méthodes homotopiques simpliciales. Ph.D. Thesis, ENSEEIHT. Institut National Polytechnique de Toulouse, France (1989).
Gergaud, J., Haberkorn, T., Martinon, P.: Low thrust minimum fuel orbital transfer: an homotopic approach. J. Guid. Control. Dyn. 27(6), 1046–1060 (2004).
Gergaud, J., Haberkorn, T.: Homotopy method for minimum consumption orbit transfer problem. ESAIM Control. Optim. Calc. Var. 2(12), 294–310 (2006).
Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin, 458 (2012).
Goh, B.S: Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control. 4(4), 716–731 (1966).
Haberkorn, T., Trélat, E.: Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control. Optim. 94, 1498–1522 (2011).
Hartl, R.F, Sethi, S.P, Vickson, R.G: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995).
Hermant, A.: Homotopy algorithm for optimal control problems with a second-order state constraint. Appl. Math. Optim. 1(61), 85–127 (2010).
Hermant, A.: Optimal control of the atmospheric reentry of a space shuttle by an homotopy method. Opt. Cont. Appl. Methods. 32, 627–646 (2011).
Kelley, H.J, Kopp, R.E, Moyer, H.G, Gardner, H.: Singular extremals. In: Leitmann, G. (ed.)Topics in Optimization, pp. 63–101. Academic Press, New York (1967).
Kirches, C.: A Numerical Method for Nonlinear Robust Optimal Control with Implicit Discretization. Thesis at University of Heidelberg (2006).
Krener, A.J: The high order maximal principle and its application to singular extremals. SIAM J. Control. Optim. 15, 256–293 (1977).
Lu, P., Forbes, S., Baldwin, M.: A versatile powered guidance algorithm. In: AIAA Guidance, Navigation, and Control Conference, p. 4843, San Diego (2012).
Maurer, H., Büskens, C., Kim, J.HR, Kaya, C.Y: Optimization methods for the verification of second-order sufficient conditions for bang-bang controls. Optim. Control. Appl. Methods26, 129–156 (2005).
Maurer, H., Oberle, H.J: Second order sufficient conditions for optimal control problems with free final time: The Riccati approach. SIAM J. Control. Optim. 41, 380–403 (2002).
Maurer, H., Pickenhain, S.: Second-order sufficient conditions for optimal control problems with mixed control-state constraints. J. Optim. Theory Appl. 86, 649–667 (1995).
Marchal, C.: Chattering arcs and chattering controls. J. Optim. Theory Appl. 11, 441–468 (1973).
Markopoulos, N., Calise, A.: Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints. In: AIAA Guidance, Navigation and Control Conference, Monterey, California (1993).
Milyutin, A.A, Osmolovskii, N.P: Calculus of Variations and Optimal Control. Transl. Math. Monogr. 180, 159–172 (1999).
Moré, J., Sorensen, D., Hillstrom, K., Garbow, B.: The MINPACK project, in Sources and Development of Mathematical Software(Cowell, W., ed.)Prentice-Hall, Englewood, Clis (1984).
Mosier, M.R, Harris, G.N, Whitmeyer, C.: Pegasus air-launched space booster payload interfaces and processing procedures for small optical payloads. In: International Society for Optics and Photonics, pp. 177–192, Orlando’91, Orlando (1991).
Osmolovskii, N.P, Lempio, F.: Transformation of quadratic forms to perfect squares for broken extremal. Set-Valued Anal. 10, 209–232 (2002).
Pesch, H.J: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23(1/2), 7–60 (1994).
Pontryagin, L.S: The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York (1962).
Rheinboldt, W.C: Numerical continuation methods: a perspective. J. Comput. Appl. Math. 1(124), 229–244 (2000).
Robbins, H.M: Optimality of intermediate-thrust arcs of rocket trajectories. AIAA J. 6(3), 1094–1098 (1965).
Roble, N.R, Petters, D.P, Fisherkeller, K.J: Further exploration of an airbreathing Pegasus alternative. In: Joint Propulsion Conference and Exhibit, Monterey (1993).
Schättler, H., Ledzewicz, U.: Geometric optimal control: theory, methods and examples, vol. 38. Springer Science & Business Media, New York (2012).
Sarigul-Klijn, N., Noel, C., Sarigul-Klijn, M.: Air launching earth-to-orbit vehicles: Delta V gains from launch conditions and vehicle aerodynamics. AIAA. 872, 1–9 (2004).
Sarigul-Klijn, N., Sarigul-Klijn, M., Noel, C.: Air-launching earth to orbit: effects of launch conditions and vehicle aerodynamics. J. Spacecr. Rocket. 3(42), 569–575 (2005).
Sethian, J.A: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge university press, Cambridge (1999).
Silva, C., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Control. 11(55), 2488–2499 (2010).
Silva, C.J, Trélat, E.: Asymptotic approach on conjugate points for minimal time bang-bang controls. Syst. Control Lett. 11(59), 720–733. 2010,
Snyman, J.A, Stander, N., Roux, W.J: A dynamic penalty function method for the solution of structural optimization problems. Appl. Math. Model. 18(8), 453–460 (1994).
Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. Second, Vol. 12. Applied Mathematics Springer Verlag, New York (1993).
Trélat, E.: Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control. Syst. 6(4), 511–541 (2000).
Trélat, E.: Optimal control of a space shuttle, and numerical simulations. Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. suppl, 842–851 (2003).
Trélat, E.: Contrôle optimal : théorie & applications. Vuibert, Paris (2005).
Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 3(154), 713–758 (2012).
Wächter, A., Biegler, L.T: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). https://projects.coin-or.org/Ipopt.
Watson, L.T: Theory of globally convergent probability-one homotopies for nonlinear programming. SIAM J. Optim. 3(11), 761–780 (2001).
Wonham, W.M: Note on a problem in optimal non-linear control. J. Electron. Control. 15, 59–62 (1963).
Zeidan, V.: The Riccati equation for optimal control problems with mixed state-control constraints: Necessity and sufficiency. SIAM J. Control. Optim. 32, 1297–1321 (1994).
Zelikin, M.I, Borisov, V.F: Theory of Chattering Control, with Applications to Astronautics, Robotics, Economics and Engineering. chapter 2,. 68, 2–4 (1994).
Zelikin, M.I, Borisov, V.F: Optimal chattering feedback control. J. Math. Sci. 114(3), 1227–1344 (2003).
Zhu, J., Trélat, E., Cerf, M.: Minimum time control of the rocket attitude reorientation associated with orbit dynamics. SIAM J. Control. Optim. 1(54), 391–422 (2016).
Zhu, J., Trélat, E., Cerf, M.:Planar tilting maneuver of a spacecraft: singular arcs in the minimum time problem and chattering, Discrete Cont. Dynam. Syst. Ser. B. 21(4), 1347–1388 (2016).