Geometric optimal control and applications to aerospace

Jiamin Zhu1, Emmanuel Trélat1, Max Cerf2
1Sorbonne Universités, Paris, France
2Airbus Defence and Space, Les Mureaux Cedex, France

Tóm tắt

This article deals with applications of optimal control to aerospace problems with a focus on modern geometric optimal control tools and numerical continuation techniques. Geometric optimal control is a theory combining optimal control with various concepts of differential geometry. The ultimate objective is to derive optimal synthesis results for general classes of control systems. Continuation or homotopy methods consist in solving a series of parameterized problems, starting from a simple one to end up by continuous deformation with the initial problem. They help overcoming the difficult initialization issues of the shooting method. The combination of geometric control and homotopy methods improves the traditional techniques of optimal control theory. A nonacademic example of optimal attitude-trajectory control of (classical and airborne) launch vehicles, treated in details, illustrates how geometric optimal control can be used to analyze finely the structure of the extremals. This theoretical analysis helps building an efficient numerical solution procedure combining shooting methods and numerical continuation. Chattering is also analyzed and it is shown how to deal with this issue in practice.

Từ khóa


Tài liệu tham khảo

Agrachev, A.A, Sachkov, Y.L: Control theory from the geometric viewpoint. Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin (2004).

Agrachev, A., Sarychev, A.: On abnormal extremals for Lagrange variational problems. J. Math. Syst. Estim. Control. 1(8), 87–118 (1998).

Allgower, E., Georg, K.: Numerical continuation methods, Vol. 13. Springer-Verlag, Berlin (1990).

Allgower, E., Georg, K.: Piecewise linear methods for nonlinear equations and optimization. J Comput. Appl. Math. 124(1), 245–261 (2000).

Bischof, C., Carle, A., Kladem, P., Mauer, A.: Adifor 2.0: Automatic differentiation of Fortran 77 programs. IEEE Comput. Sci. Eng. 3, 18–32 (1996).

Betts, J.T: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998).

Betts, J.T: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. In: Advances in Design and Control, SIAM, Philadelphia (2010).

Bérend, N., Bonnans, F., Haddou, M., Laurent-Varin, J., Talbot, C.: An interior-point approach to trajectory optimization. J. Guid. Control. Dyn. 30(5), 1228–1238 (2007).

Bock, H.G, Plitt, K.J: A multiple shooting algorithm for direct solution of optimal control problem. In: Proceedings 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, Budapest, Hungary (1984).

Bolza, O.: Calculus of variations. Chelsea Publishing Co., New York (1973).

Bonnans, J.F, Hermant, A.: Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods. ESAIM Control Optim. Calc. Var. 4(14), 825–863 (2008).

Bonnans, F., Laurent-Varin, J., Martinon, P., Trélat, E.: Numerical study of optimal trajectories with singular arcs for an Ariane 5 launcher. J. Guid. Control Dyn. 1(32), 51–55 (2009).

Bonnans, F., Martinon, P., Grélard, V.: Bocop-A collection of examples (2012). http://ampl.com/products/ampl/, http://bocop.org/.

Bonnans, F., Martinon, P., Trélat, E.: Singular arcs in the generalized Goddard’s problem. J. Optim. Theory Appl. 2(139), 439–461 (2008).

Bonnard, B., Caillau, J.B, Trélat, E.: Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control. Optimisation Calc. Var. 13, 207–236 (2007).

Bonnard, B., Chyba, M.: The role of singular trajectories in control theory. Springer Verlag, New York (2003).

Bonnard, B., Faubourg, L., Launay, G., Trélat, E.: Optimal control with state constraints and the space shuttle re-entry problem. J. Dyn. Control. Syst. 2(9), 155–199 (2003).

Bonnard, B., Faubourg, L., Trélat, E.: Optimal control of the atmospheric arc of a space shuttle and numerical simulations by multiple-shooting techniques. Math. Models Methods Appl. Sci. 1(15), 109–140 (2005).

Bonnard, B., Faubourg, L., Trélat, E.: Mécanique céleste et contrôle des véhicules spatiaux. (French) [Celestial mechanics and the control of space vehicles] Mathématiques & Applications (Berlin) [Mathematics & Applications], 51, xiv+276 (2006).

Bonnard, B., Faubourg, L., Trélat, E.: Mécanique Céleste et Contrôle de Systèmes Spatiaux. In: Math. & Appl.,. Springer, Berlin (2006). XIV.

Bonnard, B., Trélat, E.: On the role of abnormal minimizers in SR-geometry. Ann. Fac. Sci. Toulouse (6). 10(3), 405–491 (2001).

Bonnard, B., Trélat, E.: Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale. ESAIM Control. Optim. Calc. Var. 7, 179–222 (2002).

Bryson, A.E, Ho, Y.: Applied optimal control: optimization, estimation and control. CRC Press, USA (1975).

Brunovský, P.: Every normal linear system has a regular time-optimal synthesis. Mathematica Slovaca. 28(1), 81–100 (1978).

Brunovský, P.: Existence of regular synthesis for general problems. J. Differ. Equ. 38, 317–343 (1980).

Caillau, J.B, Cots, O., Gergaud, J.: Differential continuation for regular optimal control problems. Optim. Meth. Softw. 2(27), 177–196 (2012).

Caillau, J.B, Daoud, B.: Minimum time control of the restricted three-body problem. SIAM J. Control. Optim. 50(6), 3178–3202 (2012).

Caillau, J.B, Gergaud, J., Noailles, J.: 3D geosynchronous transfer of a satellite: continuation on the thrust. J. Optim. Theory Appl. 3(118), 541–565 (2003).

Caillau, J.B, Noailles, J.: Continuous optimal control sensitivity analysis with AD, Automatic Differentiation: From Simulation to Optimization. Springer, Berlin (2002).

Caponigro, M., Piccoli, B., Rossi, F., Trélat, E.: Sparse Jurdjevic–Quinn stabilization of dissipative systems, Preprint Hal 2016, 21. to appear in in Automatica; a preprint on Hal: hal-01397843.

Cerf, M., Haberkorn, T., Trélat, E.: Continuation from a flat to a round Earth model in the coplanar orbit transfer problem. Optim. Control. Appl. Meth. 33(6), 654–675 (2012).

Cesari, L.: Optimization – Theory and Applications. Problems with Ordinary Differential Equations, Applications of Mathematics, Vol. 17. Verlag, Springer (1983).

Chen, Z., Caillau, J.B, Chitour, Y.: L 1-Minimization for Mechanical Systems. SIAM J. Control. Optim. 53(4) (2016).

Chitour, Y., Jean, F., Trélat, E.: Singular trajectories of control-affine systems. SIAM J. Control. Optim. 47, 1078–1095 (2008).

Chow, S.N, Mallet-Paret, J., Yorke, J.A: Finding zeros of maps: homotopy methods that are constructive with probability one. Math. Comput. 32, 887–899 (1978).

Clegern, J.B, Ostrander, M.J: Pegasus upgrades - A continuing study into an air-breathing alternative. In: 31 st AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, San Diego (1995).

Corvin, M.A: Ascent guidance for a Winged Boost Vehicle, NASA CR-172083 (1988).

Crouch, P.: Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models. IEEE Trans. Autom. Control. 4(29), 321–331 (1984).

Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II UsersŠ Manual. IWR-Preprint 2001-25, Universität Heidelberg (2001).

Denham, W.F, Bryson, A.E: Optimal programming problems with inequality constraints. 2. Solution by steepest-ascent. AIAA J. 1(2), 25–34 (1964).

Dukeman, G., Calise, A.J: Enhancements to an atmospheric ascent guidance algorithm. AIAA Pap. 5638, 1–7 (2003).

Dunn, J.C: Second-order optimality conditions in sets of L ∞ functions with range in a polyhedron. SIAM J. Control. Optim. 33, 1603–1635 (1995).

Frangos, C., Snyman, J.A: The application of parameter optimisation techniques to linear optimal control system design. Automatica. 28(1), 153–157 (1992).

Fuller, A.T: Study of an Optimum Non-Linear Control System. Int. J. Electron. 15(1), 63–71 (1963).

Gabasov, R., Kirillova, F.M: High order necessary conditions for optimality. SIAM J Control. 10(1), 127–168 (1972).

Garcia, C.B, Zangwill, W.I: An approach to homotopy and degree theory. Math. Oper. Res. 4(4), 390–405 (1979).

Gergaud, J.: Résolution numérique de problèmes de commande optimale à solution Bang-Bang par des méthodes homotopiques simpliciales. Ph.D. Thesis, ENSEEIHT. Institut National Polytechnique de Toulouse, France (1989).

Gergaud, J., Haberkorn, T., Martinon, P.: Low thrust minimum fuel orbital transfer: an homotopic approach. J. Guid. Control. Dyn. 27(6), 1046–1060 (2004).

Gergaud, J., Haberkorn, T.: Homotopy method for minimum consumption orbit transfer problem. ESAIM Control. Optim. Calc. Var. 2(12), 294–310 (2006).

Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin, 458 (2012).

Goh, B.S: Necessary conditions for singular extremals involving multiple control variables. SIAM J. Control. 4(4), 716–731 (1966).

Haberkorn, T., Trélat, E.: Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control. Optim. 94, 1498–1522 (2011).

Hartl, R.F, Sethi, S.P, Vickson, R.G: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995).

Hermant, A.: Homotopy algorithm for optimal control problems with a second-order state constraint. Appl. Math. Optim. 1(61), 85–127 (2010).

Hermant, A.: Optimal control of the atmospheric reentry of a space shuttle by an homotopy method. Opt. Cont. Appl. Methods. 32, 627–646 (2011).

Kelley, H.J, Kopp, R.E, Moyer, H.G, Gardner, H.: Singular extremals. In: Leitmann, G. (ed.)Topics in Optimization, pp. 63–101. Academic Press, New York (1967).

Kirches, C.: A Numerical Method for Nonlinear Robust Optimal Control with Implicit Discretization. Thesis at University of Heidelberg (2006).

Krener, A.J: The high order maximal principle and its application to singular extremals. SIAM J. Control. Optim. 15, 256–293 (1977).

Lu, P., Forbes, S., Baldwin, M.: A versatile powered guidance algorithm. In: AIAA Guidance, Navigation, and Control Conference, p. 4843, San Diego (2012).

Maurer, H., Büskens, C., Kim, J.HR, Kaya, C.Y: Optimization methods for the verification of second-order sufficient conditions for bang-bang controls. Optim. Control. Appl. Methods26, 129–156 (2005).

Maurer, H., Oberle, H.J: Second order sufficient conditions for optimal control problems with free final time: The Riccati approach. SIAM J. Control. Optim. 41, 380–403 (2002).

Maurer, H., Pickenhain, S.: Second-order sufficient conditions for optimal control problems with mixed control-state constraints. J. Optim. Theory Appl. 86, 649–667 (1995).

Marchal, C.: Chattering arcs and chattering controls. J. Optim. Theory Appl. 11, 441–468 (1973).

Markopoulos, N., Calise, A.: Near-optimal, asymptotic tracking in control problems involving state-variable inequality constraints. In: AIAA Guidance, Navigation and Control Conference, Monterey, California (1993).

Milyutin, A.A, Osmolovskii, N.P: Calculus of Variations and Optimal Control. Transl. Math. Monogr. 180, 159–172 (1999).

Moré, J., Sorensen, D., Hillstrom, K., Garbow, B.: The MINPACK project, in Sources and Development of Mathematical Software(Cowell, W., ed.)Prentice-Hall, Englewood, Clis (1984).

Mosier, M.R, Harris, G.N, Whitmeyer, C.: Pegasus air-launched space booster payload interfaces and processing procedures for small optical payloads. In: International Society for Optics and Photonics, pp. 177–192, Orlando’91, Orlando (1991).

Osmolovskii, N.P, Lempio, F.: Transformation of quadratic forms to perfect squares for broken extremal. Set-Valued Anal. 10, 209–232 (2002).

Pesch, H.J: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23(1/2), 7–60 (1994).

Pontryagin, L.S: The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York (1962).

Rheinboldt, W.C: Numerical continuation methods: a perspective. J. Comput. Appl. Math. 1(124), 229–244 (2000).

Robbins, H.M: Optimality of intermediate-thrust arcs of rocket trajectories. AIAA J. 6(3), 1094–1098 (1965).

Roble, N.R, Petters, D.P, Fisherkeller, K.J: Further exploration of an airbreathing Pegasus alternative. In: Joint Propulsion Conference and Exhibit, Monterey (1993).

Schättler, H., Ledzewicz, U.: Geometric optimal control: theory, methods and examples, vol. 38. Springer Science & Business Media, New York (2012).

Sarigul-Klijn, N., Noel, C., Sarigul-Klijn, M.: Air launching earth-to-orbit vehicles: Delta V gains from launch conditions and vehicle aerodynamics. AIAA. 872, 1–9 (2004).

Sarigul-Klijn, N., Sarigul-Klijn, M., Noel, C.: Air-launching earth to orbit: effects of launch conditions and vehicle aerodynamics. J. Spacecr. Rocket. 3(42), 569–575 (2005).

Sethian, J.A: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge university press, Cambridge (1999).

Silva, C., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Autom. Control. 11(55), 2488–2499 (2010).

Silva, C.J, Trélat, E.: Asymptotic approach on conjugate points for minimal time bang-bang controls. Syst. Control Lett. 11(59), 720–733. 2010,

Snyman, J.A, Stander, N., Roux, W.J: A dynamic penalty function method for the solution of structural optimization problems. Appl. Math. Model. 18(8), 453–460 (1994).

Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. Second, Vol. 12. Applied Mathematics Springer Verlag, New York (1993).

Trélat, E.: Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control. Syst. 6(4), 511–541 (2000).

Trélat, E.: Optimal control of a space shuttle, and numerical simulations. Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. suppl, 842–851 (2003).

Trélat, E.: Contrôle optimal : théorie & applications. Vuibert, Paris (2005).

Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 3(154), 713–758 (2012).

Wächter, A., Biegler, L.T: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). https://projects.coin-or.org/Ipopt.

Watson, L.T: Theory of globally convergent probability-one homotopies for nonlinear programming. SIAM J. Optim. 3(11), 761–780 (2001).

Wonham, W.M: Note on a problem in optimal non-linear control. J. Electron. Control. 15, 59–62 (1963).

Zeidan, V.: The Riccati equation for optimal control problems with mixed state-control constraints: Necessity and sufficiency. SIAM J. Control. Optim. 32, 1297–1321 (1994).

Zelikin, M.I, Borisov, V.F: Theory of Chattering Control, with Applications to Astronautics, Robotics, Economics and Engineering. chapter 2,. 68, 2–4 (1994).

Zelikin, M.I, Borisov, V.F: Optimal chattering feedback control. J. Math. Sci. 114(3), 1227–1344 (2003).

Zhu, J., Trélat, E., Cerf, M.: Minimum time control of the rocket attitude reorientation associated with orbit dynamics. SIAM J. Control. Optim. 1(54), 391–422 (2016).

Zhu, J., Trélat, E., Cerf, M.:Planar tilting maneuver of a spacecraft: singular arcs in the minimum time problem and chattering, Discrete Cont. Dynam. Syst. Ser. B. 21(4), 1347–1388 (2016).