Geometric localization, uniformly John property and separated semihyperbolic dynamics

Arkiv för Matematik - Tập 34 - Trang 21-49 - 1996
Zoltan Balogh1, Alexander Volberg1
1Department of Mathematics, Michigan State University, East Lansing, U.S.A.

Tài liệu tham khảo

[A1]Ancona, A., Principe de Harnack à la frontiére et théorème de Fatou pour un opérator elliptique dans un domaine lipschitzien,Ann. Inst. Fourier (Grenoble) 28:4 (1978), 169–214. [A2]Ancona, A.,Théorie du potentiel pour les graphes et les variétes, Lecture Notes in Math.1427, Springer-Verlag, Berlin-Heidelberg, 1990. [BV1]Balogh, Z. andVolberg, A., Principe de Harnack sur la frontière pour repulseurs holomorphes,C. R. Acad. Sci. Paris Sér I Math. 319 (1994), 351–354. [BV2]Balogh, Z. andVolberg, A., Boundary Harnack principle for separated semi-hyperbolic repellers. Harmonic measure applications, to appear inRev. Mat. Iberoamericana. [BH]Branner, B. andHubbard, J. H., The iteration of cubic polynomials. Part II: The patterns and parapatterns,Acta Math. 169 (1992), 229–325. [C]Carleson, L., On the existence of boundary values for harmonic functions in several variables.Ark. Mat. 4 (1962), 393–399. [CJY]Carleson, L., Jones, P. W. andYoccoz, J. C., Julia and John,Bol. Soc. Brasil Mat. 25:1 (1994), 1–30. [FLR]Freire, A., Lopes, A. andMañé, R., An invariant measure for rational maps,Bol. Soc. Brasil. Mat. 14:1 (1983), 45–62. [GHM]Gehring, F. W., Hag, K. andMartio, O., Quasihyperbolic geodesics in John domains,Math. Scand. 65 (1989), 75–92. [HR]Heinonen, J., andRohde, St., Koenigs function, quasicircles and BMO,Preprint, 1994. [JK]Jerison, D. S. andKenig, C. E., Boundary behavior of harmonic functions in non-tangentially accessible domains,Adv. in Math. 46 (1982), 80–147. [J1]Jones, P. W., A geometric localization theorem,Adv. in Math. 46 (1982), 71–79. [J2]Jones, P. W., On removable sets for Sobolev spaces in the plane,Preprint, 1992. [L1]Lyubich, M., Entropy of analytic endomorphisms of the Riemann sphere,Functional Anal. Appl. 15:4 (1981), 83–84. [L2]Lyubich, M., Entropy properties of rational endomorphisms of the Riemann sphere,Ergodic Theory Dynamical Systems 3 (1983), 351–386. [NV]Näkki, R. andVäisälä, J., John disks,Exposition. Math. 9 (1991), 3–43. [P]Pommerenke, C.,Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin, 1992. [W]Wu, J.-M., Comparison of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains,Ann. Inst. Fourier (Grenoble) 28:4 (1978), 147–167.