Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
Tài liệu tham khảo
Abramowitz, 1965
Aronszajn, 1950, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 10.1090/S0002-9947-1950-0051437-7
Y. Bengio, J.-F. Paiement, P. Vincent, Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering, Technical report 1238, Université de Montréal, 2003
M. Belkin, P. Nyoigi, V. Sindhwani, On manifold regularization, in: Proc. 10th Int. Workshop on Artificial Intelligence and Statistics, Society for Artificial Intelligence and Statistics, pp. 17–24
Wackernagel, 2003
Schoenberg, 1938, Metric spaces and completely monotone functions, Ann. of Math. (2), 39, 811, 10.2307/1968466
R.R. Coifman, S. Lafon, Diffusion maps, in preparation
Folland, 1976
C. Fowlkes, S. Belongie, J. Malik, Efficient spatiotemporal grouping using the Nyström method, IEEE Comput. Vision Pattern Recogn, December 2001
W.H. Press, S.A. Teulkosky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, Cambridge Univ. Press, New York, chap. 18.1
Slepian, 1961, Prolate spheroidal wave functions, Fourier analysis and uncertainty I, Bell System Tech. J., 40, 43, 10.1002/j.1538-7305.1961.tb03976.x
Slepian, 1964, Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions; generalized prolate spheroidal wave functions, Bell System Tech. J., 43, 3009, 10.1002/j.1538-7305.1964.tb01037.x
Williams, 2001, Using the Nyström method to speed up kernel machines, Neural Inf. Process. Systems, 13, 682