Geometric bounds for the magnetic Neumann eigenvalues in the plane

Journal de Mathématiques Pures et Appliquées - Tập 179 - Trang 454-497 - 2023
Bruno Colbois1, Corentin Léna2,3, Luigi Provenzano4, Alessandro Savo4
1Université de Neuchâtel, Institute de Mathémathiques, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
2Università degli Studi di Padova, Dipartimento di Tecnica e Gestione dei Sistemi Industriali (DTG), Stradella S. Nicola 3, 36100 Vicenza, Italy
3Dipartimento di Matematica “Tullio Levi-Civita”, via Trieste 63, 35121 Padova, Italy
4Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l'Ingegneria (SBAI), Via Antonio Scarpa 16, 00161 Roma, Italy

Tài liệu tham khảo

Abramowitz, 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 Arrieta, 2017, Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems, J. Differ. Equ., 263, 4222, 10.1016/j.jde.2017.05.011 Bauman, 1998, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Ration. Mech. Anal., 142, 1, 10.1007/s002050050082 Berezin, 1972, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR, Ser. Mat., 36, 1134 Bonnaillie, 2005, On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners, Asymptot. Anal., 41, 215 Bonnaillie-Noël, 2012, Harmonic oscillators with Neumann condition of the half-line, Commun. Pure Appl. Anal., 11, 2221, 10.3934/cpaa.2012.11.2221 Bonnaillie-Noël, 2022 Chen, 1997, On Poincaré type inequalities, Trans. Am. Math. Soc., 349, 1561, 10.1090/S0002-9947-97-01813-8 Colbois, 2022, Eigenvalues upper bounds for the magnetic Schrödinger operator, Commun. Anal. Geom., 30, 779, 10.4310/CAG.2022.v30.n4.a3 Colbois, 2018, Lower bounds for the first eigenvalue of the magnetic Laplacian, J. Funct. Anal., 274, 2818, 10.1016/j.jfa.2018.02.012 Colbois, 2021, Upper bounds for the ground state energy of the Laplacian with zero magnetic field on planar domains, Ann. Glob. Anal. Geom., 60, 1, 10.1007/s10455-021-09759-4 Courant, 1953 Egidi, 2021, Ricci curvature and eigenvalue estimates for the magnetic Laplacian on manifolds, Commun. Anal. Geom., 29, 1127, 10.4310/CAG.2021.v29.n5.a4 Ekholm, 2016, Estimates for the lowest eigenvalue of magnetic Laplacians, J. Math. Anal. Appl., 439, 330, 10.1016/j.jmaa.2016.02.073 Erdős, 1996, Rayleigh-type isoperimetric inequality with a homogeneous magnetic field, Calc. Var. Partial Differ. Equ., 4, 283, 10.1007/BF01254348 Erdős, 2000, Diamagnetic behavior of sums of Dirichlet eigenvalues, Ann. Inst. Fourier (Grenoble), 50, 891, 10.5802/aif.1777 Exner, 2018, On the bound states of magnetic Laplacians on wedges, Rep. Math. Phys., 82, 161, 10.1016/S0034-4877(18)30084-3 Fournais, 2007, Strong diamagnetism for general domains and application, 57, 2389 Fournais, 2010, Spectral Methods in Surface Superconductivity, vol. 77 Fournais, 2019, Inequalities for the lowest magnetic Neumann eigenvalue, Lett. Math. Phys., 109, 1683, 10.1007/s11005-018-01154-8 Fournais, 2015, Lack of diamagnetism and the Little-Parks effect, Commun. Math. Phys., 337, 191, 10.1007/s00220-014-2267-7 Frank, 2008, Eigenvalue estimates for magnetic Schrödinger operators in domains, Proc. Am. Math. Soc., 136, 4245, 10.1090/S0002-9939-08-09523-3 Golomb, 1964, Replicating figures in the plane, Math. Gaz., 48, 403, 10.2307/3611700 Gray, 2004, Tubes, vol. 221 Harrell, 2014, On sums of graph eigenvalues, Linear Algebra Appl., 455, 168, 10.1016/j.laa.2014.05.001 Harrell, 2011, On Riesz means of eigenvalues, Commun. Partial Differ. Equ., 36, 1521, 10.1080/03605302.2011.595865 Helffer, 2021, Thin domain limit and counterexamples to strong diamagnetism, Rev. Math. Phys., 33, 10.1142/S0129055X21500033 Kröger, 1992, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space, J. Funct. Anal., 106, 353, 10.1016/0022-1236(92)90052-K Lange, 2015, Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians, Calc. Var. Partial Differ. Equ., 54, 4165, 10.1007/s00526-015-0935-x Laugesen, 2012, Sums of magnetic eigenvalues are maximal on rotationally symmetric domains, Ann. Henri Poincaré, 13, 731, 10.1007/s00023-011-0142-z Laugesen, 2015, Magnetic spectral bounds on starlike plane domains, ESAIM Control Optim. Calc. Var., 21, 670, 10.1051/cocv/2014043 Li, 1983, On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys., 88, 309, 10.1007/BF01213210 Payne, 1960, An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5, 286, 10.1007/BF00252910 Pólya, 1961, On the eigenvalues of vibrating membranes, Proc. Lond. Math. Soc., 3, 419, 10.1112/plms/s3-11.1.419 Raymond, 2017, Bound States of the Magnetic Schrödinger Operator, vol. 27 Rubinstein, 2001, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum, Arch. Ration. Mech. Anal., 160, 271, 10.1007/s002050100164 Saint-James, 1965, Etude du champ critique Hc3 dans une géométrie cylindrique, Phys. Lett., 15, 13, 10.1016/0031-9163(65)91101-7 Son, 2014 Talenti, 1976, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 3, 697