Geometric bounds for the magnetic Neumann eigenvalues in the plane
Tài liệu tham khảo
Abramowitz, 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55
Arrieta, 2017, Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems, J. Differ. Equ., 263, 4222, 10.1016/j.jde.2017.05.011
Bauman, 1998, Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Ration. Mech. Anal., 142, 1, 10.1007/s002050050082
Berezin, 1972, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR, Ser. Mat., 36, 1134
Bonnaillie, 2005, On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners, Asymptot. Anal., 41, 215
Bonnaillie-Noël, 2012, Harmonic oscillators with Neumann condition of the half-line, Commun. Pure Appl. Anal., 11, 2221, 10.3934/cpaa.2012.11.2221
Bonnaillie-Noël, 2022
Chen, 1997, On Poincaré type inequalities, Trans. Am. Math. Soc., 349, 1561, 10.1090/S0002-9947-97-01813-8
Colbois, 2022, Eigenvalues upper bounds for the magnetic Schrödinger operator, Commun. Anal. Geom., 30, 779, 10.4310/CAG.2022.v30.n4.a3
Colbois, 2018, Lower bounds for the first eigenvalue of the magnetic Laplacian, J. Funct. Anal., 274, 2818, 10.1016/j.jfa.2018.02.012
Colbois, 2021, Upper bounds for the ground state energy of the Laplacian with zero magnetic field on planar domains, Ann. Glob. Anal. Geom., 60, 1, 10.1007/s10455-021-09759-4
Courant, 1953
Egidi, 2021, Ricci curvature and eigenvalue estimates for the magnetic Laplacian on manifolds, Commun. Anal. Geom., 29, 1127, 10.4310/CAG.2021.v29.n5.a4
Ekholm, 2016, Estimates for the lowest eigenvalue of magnetic Laplacians, J. Math. Anal. Appl., 439, 330, 10.1016/j.jmaa.2016.02.073
Erdős, 1996, Rayleigh-type isoperimetric inequality with a homogeneous magnetic field, Calc. Var. Partial Differ. Equ., 4, 283, 10.1007/BF01254348
Erdős, 2000, Diamagnetic behavior of sums of Dirichlet eigenvalues, Ann. Inst. Fourier (Grenoble), 50, 891, 10.5802/aif.1777
Exner, 2018, On the bound states of magnetic Laplacians on wedges, Rep. Math. Phys., 82, 161, 10.1016/S0034-4877(18)30084-3
Fournais, 2007, Strong diamagnetism for general domains and application, 57, 2389
Fournais, 2010, Spectral Methods in Surface Superconductivity, vol. 77
Fournais, 2019, Inequalities for the lowest magnetic Neumann eigenvalue, Lett. Math. Phys., 109, 1683, 10.1007/s11005-018-01154-8
Fournais, 2015, Lack of diamagnetism and the Little-Parks effect, Commun. Math. Phys., 337, 191, 10.1007/s00220-014-2267-7
Frank, 2008, Eigenvalue estimates for magnetic Schrödinger operators in domains, Proc. Am. Math. Soc., 136, 4245, 10.1090/S0002-9939-08-09523-3
Golomb, 1964, Replicating figures in the plane, Math. Gaz., 48, 403, 10.2307/3611700
Gray, 2004, Tubes, vol. 221
Harrell, 2014, On sums of graph eigenvalues, Linear Algebra Appl., 455, 168, 10.1016/j.laa.2014.05.001
Harrell, 2011, On Riesz means of eigenvalues, Commun. Partial Differ. Equ., 36, 1521, 10.1080/03605302.2011.595865
Helffer, 2021, Thin domain limit and counterexamples to strong diamagnetism, Rev. Math. Phys., 33, 10.1142/S0129055X21500033
Kröger, 1992, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space, J. Funct. Anal., 106, 353, 10.1016/0022-1236(92)90052-K
Lange, 2015, Frustration index and Cheeger inequalities for discrete and continuous magnetic Laplacians, Calc. Var. Partial Differ. Equ., 54, 4165, 10.1007/s00526-015-0935-x
Laugesen, 2012, Sums of magnetic eigenvalues are maximal on rotationally symmetric domains, Ann. Henri Poincaré, 13, 731, 10.1007/s00023-011-0142-z
Laugesen, 2015, Magnetic spectral bounds on starlike plane domains, ESAIM Control Optim. Calc. Var., 21, 670, 10.1051/cocv/2014043
Li, 1983, On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys., 88, 309, 10.1007/BF01213210
Payne, 1960, An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5, 286, 10.1007/BF00252910
Pólya, 1961, On the eigenvalues of vibrating membranes, Proc. Lond. Math. Soc., 3, 419, 10.1112/plms/s3-11.1.419
Raymond, 2017, Bound States of the Magnetic Schrödinger Operator, vol. 27
Rubinstein, 2001, Variational problems on multiply connected thin strips. I. Basic estimates and convergence of the Laplacian spectrum, Arch. Ration. Mech. Anal., 160, 271, 10.1007/s002050100164
Saint-James, 1965, Etude du champ critique Hc3 dans une géométrie cylindrique, Phys. Lett., 15, 13, 10.1016/0031-9163(65)91101-7
Son, 2014
Talenti, 1976, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 3, 697