Geometric and Combinatorial Realizations of Crystal Graphs

Algebras and Representation Theory - Tập 9 Số 2 - Trang 161-199 - 2006
Savage, Alistair1
1Department of Mathematics, Bahen Centre for Information Technology, University of Toronto, Toronto, Canada

Tóm tắt

For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For type A n (1) , we extend the Young wall construction to arbitrary level, describing a combinatorial realization of the crystals in terms of new objects which we call Young pyramids.

Tài liệu tham khảo

citation_title=Path space realization of the basic representation of ; citation_inbook_title=Infinite Dimensional Lie Algebras and Groups; citation_publication_date=1989; citation_pages=108-123; citation_id=CR1; citation_author=E. Date; citation_author=M. Jimbo; citation_author=A. Kuniba; citation_author=T. Miwa; citation_author=M. Okado; citation_publisher=World Scientific citation_journal_title=Adv. Stud. Pure Math.; citation_title=Paths, Maya diagrams and representations of ; citation_author=E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado; citation_volume=19; citation_publication_date=1989; citation_pages=149-191; citation_id=CR2 citation_journal_title=Internat. Math. Res. Notices; citation_title=Bases of representations of type A affine Lie algebras via quiver varieties and statistical mechanics; citation_author=I. B. Frenkel, A. Savage; citation_volume=28; citation_publication_date=2003; citation_pages=1521-1548; citation_doi=10.1155/S1073792803211284; citation_id=CR3 citation_title=Introduction to Quantum Groups and Crystal Bases; citation_publication_date=2000; citation_id=CR4; citation_author=J. Hong; citation_author=S.-J. Kang; citation_publisher=Amer. Math. Soc. citation_journal_title=Proc. London Math. Soc.; citation_title=Crystal bases for quantum affine algebras and combinatorics of Young walls; citation_author=S.-J. Kang; citation_volume=86; citation_publication_date=2003; citation_pages=26-69; citation_doi=10.1112/S0024611502013734; citation_id=CR5 citation_journal_title=J. Algebra; citation_title=Crystal graphs for representations of the q-analogue of classical Lie algebras; citation_author=M. Kashiwara, T. Nakashima; citation_volume=165; citation_publication_date=1994; citation_pages=295-345; citation_doi=10.1006/jabr.1994.1114; citation_id=CR6 citation_journal_title=Duke Math. J.; citation_title=Geometric construction of crystal bases; citation_author=M. Kashiwara, Y. Saito; citation_volume=89; citation_issue=1; citation_publication_date=1997; citation_pages=9-36; citation_doi=10.1215/S0012-7094-97-08902-X; citation_id=CR7 Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping, J. Amer. Math. Soc. (4) (1991), 365–421. citation_journal_title=J. Differential Geom.; citation_title=Homology of moduli spaces of instantons on ALE spaces; citation_author=H. Nakajima; citation_volume=40; citation_publication_date=1994; citation_pages=105-127; citation_id=CR9 citation_journal_title=Duke Math. J.; citation_title=Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras; citation_author=H. Nakajima; citation_volume=76; citation_issue=2; citation_publication_date=1994; citation_pages=365-416; citation_doi=10.1215/S0012-7094-94-07613-8; citation_id=CR10 citation_journal_title=Duke Math. J.; citation_title=Quiver varieties and Kac–Moody algebras; citation_author=H. Nakajima; citation_volume=91; citation_issue=3; citation_publication_date=1998; citation_pages=515-560; citation_doi=10.1215/S0012-7094-98-09120-7; citation_id=CR11 citation_journal_title=Contemp. Math.; citation_title=t-analogs of q-characters of quantum affine algebras of type An, Dn; citation_author=H. Nakajima; citation_volume=325; citation_publication_date=2003; citation_pages=141-160; citation_id=CR12 citation_journal_title=Math. Ann.; citation_title=Crystal bases and quiver varieties; citation_author=Y. Saito; citation_volume=324; citation_issue=4; citation_publication_date=2002; citation_pages=675-688; citation_doi=10.1007/s00208-002-0332-6; citation_id=CR13 Savage, A.: A geometric realization of spin representations and Young diagrams from quiver varieties, arXiv:math.AG/0307018.