Geometric and Combinatorial Realizations of Crystal Graphs
Tóm tắt
For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For type A n (1) , we extend the Young wall construction to arbitrary level, describing a combinatorial realization of the crystals in terms of new objects which we call Young pyramids.
Tài liệu tham khảo
citation_title=Path space realization of the basic representation of ; citation_inbook_title=Infinite Dimensional Lie Algebras and Groups; citation_publication_date=1989; citation_pages=108-123; citation_id=CR1; citation_author=E. Date; citation_author=M. Jimbo; citation_author=A. Kuniba; citation_author=T. Miwa; citation_author=M. Okado; citation_publisher=World Scientific
citation_journal_title=Adv. Stud. Pure Math.; citation_title=Paths, Maya diagrams and representations of
; citation_author=E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado; citation_volume=19; citation_publication_date=1989; citation_pages=149-191; citation_id=CR2
citation_journal_title=Internat. Math. Res. Notices; citation_title=Bases of representations of type A affine Lie algebras via quiver varieties and statistical mechanics; citation_author=I. B. Frenkel, A. Savage; citation_volume=28; citation_publication_date=2003; citation_pages=1521-1548; citation_doi=10.1155/S1073792803211284; citation_id=CR3
citation_title=Introduction to Quantum Groups and Crystal Bases; citation_publication_date=2000; citation_id=CR4; citation_author=J. Hong; citation_author=S.-J. Kang; citation_publisher=Amer. Math. Soc.
citation_journal_title=Proc. London Math. Soc.; citation_title=Crystal bases for quantum affine algebras and combinatorics of Young walls; citation_author=S.-J. Kang; citation_volume=86; citation_publication_date=2003; citation_pages=26-69; citation_doi=10.1112/S0024611502013734; citation_id=CR5
citation_journal_title=J. Algebra; citation_title=Crystal graphs for representations of the q-analogue of classical Lie algebras; citation_author=M. Kashiwara, T. Nakashima; citation_volume=165; citation_publication_date=1994; citation_pages=295-345; citation_doi=10.1006/jabr.1994.1114; citation_id=CR6
citation_journal_title=Duke Math. J.; citation_title=Geometric construction of crystal bases; citation_author=M. Kashiwara, Y. Saito; citation_volume=89; citation_issue=1; citation_publication_date=1997; citation_pages=9-36; citation_doi=10.1215/S0012-7094-97-08902-X; citation_id=CR7
Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping, J. Amer. Math. Soc. (4) (1991), 365–421.
citation_journal_title=J. Differential Geom.; citation_title=Homology of moduli spaces of instantons on ALE spaces; citation_author=H. Nakajima; citation_volume=40; citation_publication_date=1994; citation_pages=105-127; citation_id=CR9
citation_journal_title=Duke Math. J.; citation_title=Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras; citation_author=H. Nakajima; citation_volume=76; citation_issue=2; citation_publication_date=1994; citation_pages=365-416; citation_doi=10.1215/S0012-7094-94-07613-8; citation_id=CR10
citation_journal_title=Duke Math. J.; citation_title=Quiver varieties and Kac–Moody algebras; citation_author=H. Nakajima; citation_volume=91; citation_issue=3; citation_publication_date=1998; citation_pages=515-560; citation_doi=10.1215/S0012-7094-98-09120-7; citation_id=CR11
citation_journal_title=Contemp. Math.; citation_title=t-analogs of q-characters of quantum affine algebras of type An, Dn; citation_author=H. Nakajima; citation_volume=325; citation_publication_date=2003; citation_pages=141-160; citation_id=CR12
citation_journal_title=Math. Ann.; citation_title=Crystal bases and quiver varieties; citation_author=Y. Saito; citation_volume=324; citation_issue=4; citation_publication_date=2002; citation_pages=675-688; citation_doi=10.1007/s00208-002-0332-6; citation_id=CR13
Savage, A.: A geometric realization of spin representations and Young diagrams from quiver varieties, arXiv:math.AG/0307018.