Geometric Integration Methods that Preserve Lyapunov Functions

Springer Science and Business Media LLC - Tập 45 Số 4 - Trang 709-723 - 2005
Volker Grimm1, G. Quispel1
1Department of Mathematics, and Centre for Mathematics and Statistics of Complex Systems, La Trobe University, Bundoora, Melbourne 3086, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

U. Ascher and S. Reich, On some difficulties in integrating highly oscillatory Hamiltonian systems, in Computational Molecular Dynamics, Lect. Notes Comput. Sci. Eng. 4, Springer, Berlin, 1999, pp. 281–296.

C. J. Budd and A. Iserles, eds., Geometric Integration: Numerical solution of differential equations on manifolds, Special edition of Philos. Trans. R. Soc. Lond., 357 (1999).

C. J. Budd and M. D. Piggott, Geometric integration and its applications, Proceedings of ECMWF workshop on “Developments in numerical methods for very high resolution global models”, 2000, pp. 93–118.

C. M. Elliot and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30 (1993), pp. 1622–1663.

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.

E. Hairer, A. Iserles and J. M. Sanz-Serna, Equilibria of Runge-Kutta methods, Numer. Math., 38 (1990), pp. 243–254.

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, Berlin, Heidelberg, 1996.

E. Hairer, Symmetric Projection Methods for Differential Equations on Manifolds, BIT, 40 (2000), pp. 726–734.

E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration, Springer, 2002.

K. Heun, Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhängigen Veränderlichen, Z. Math. Phys., 45 (1900), pp. 23–38.

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, Acta Numer., 9 (2000), pp. 215–365.

V. Lakshmikantham, V. M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer, Dordrecht, 1991.

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, 2004.

A. A. Martynyuk, Stability by Liapunov’s Matrix Function Method with Applications, Marcel Dekker, New York, Basel, Hong Kong, 1998.

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, A unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with a Lyapunov function and/or first integrals, Phys. Rev. Lett., 81 (1998), pp. 2399–2403.

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond. A, 357 (1999), pp. 1021–1045.

R. I. McLachlan and G. R. W. Quispel, Six lectures on the geometric integration of ODEs, in Foundations of Computational Mathematics, C. U. P., R. A. DeVore et al., eds., 2001, pp. 155–210.

R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), pp. 341–434.

J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

H. J. Stetter, Analysis of Discretisation Methods for Ordinary Differential Equations, Springer, Berlin, 1973.

A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Univ. Press, New York, 1996.

G. Wanner, Runge-Kutta-methods with expansion in even powers of h, Computing, 11 (1973), pp. 81–85.