Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group

Bulletin of Mathematical Sciences - Tập 6 - Trang 335-352 - 2016
Simon Larson1
1Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden

Tóm tắt

We prove geometric $$L^p$$ versions of Hardy’s inequality for the sub-elliptic Laplacian on convex domains $$\Omega $$ in the Heisenberg group $$\mathbb {H}^n$$ , where convex is meant in the Euclidean sense. When $$p=2$$ and $$\Omega $$ is the half-space given by $$\langle \xi , \nu \rangle > d$$ this generalizes an inequality previously obtained by Luan and Yang. For such p and $$\Omega $$ the inequality is sharp and takes the form $$\begin{aligned} \int _\Omega |\nabla _{\mathbb {H}^n}u|^2 \, d\xi \ge \frac{1}{4}\int _{\Omega } \sum _{i=1}^n\frac{\langle X_i(\xi ), \nu \rangle ^2+\langle Y_i(\xi ), \nu \rangle ^2}{{{\mathrm{\text {dist}}}}(\xi , \partial \Omega )^2}|u|^2\, d\xi , \end{aligned}$$ where $${{\mathrm{\text {dist}}}}(\, \cdot \,, \partial \Omega )$$ denotes the Euclidean distance from $$\partial \Omega $$ .

Tài liệu tham khảo

Arcozzi, N., Ferrari, F.: Metric normal and distance function in the Heisenberg group. Math. Z. 256(3), 661–684 (2007) Arcozzi, N., Ferrari, F.: The Hessian of the distance from a surface in the Heisenberg group. Ann. Acad. Sci. Fenn. Math. 33(1), 35–63 (2008) Avkhadiev, F.G.: Hardy type inequalities in higher dimensions with explicit estimate of constants. Lobachevskii J. Math. 21, 3–31 (2006) Balinsky, A.A., Evans, W.D., Lewis, R.T.: The Analysis and Geometry of Hardy’s Inequality. Universitext, Springer International Publishing, New York (2015) Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939) D’Ambrosio, L.: Some hardy inequalities on the Heisenberg group. Differ. Equ. 40(4), 552–564 (2004) Danielli, D., Garofalo, N., Phuc, N.C.: Inequalities of Hardy-Sobolev type in Carnot-Carathéodory spaces, Sobolev spaces in mathematics. I Int. Math. Ser. (N. Y.), vol. 8, pp. 117–151. Springer, New York (2009) Davies, E.B.: Heat kernels and Spectral Theory, Cambridge Tracts in Mathematics, vol. 92. Cambridge Univ. Press, Cambridge (1989) Garofalo, N., Lanconelli, E.: Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier (Grenoble) 40(2), 313–356 (1990) Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119(1), 147–171 (1967) Jin, Y.: Hardy-type inequalities on H-type groups and anisotropic Heisenberg groups. Chin. Ann. Math. Ser. B 29(5), 567–574 (2008) Luan, J., Yang, Q.: A Hardy type inequality in the half-space on \(\mathbb{R}^n\) and Heisenberg group. J. Math. Anal. Appl. 347(2), 645–651 (2008) Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations, augmented ed., Fundamental Principles of Mathematical Sciences. Springer, Heidelberg (2011) Prandi, D., Rizzi, L., Seri, M.: A sub-Riemannian Santaló formula with applications to isoperimetric inequalities and first Dirichlet eigenvalue of hypoelliptic operators, p. 1509.05415. ArXiv e-prints, (2015) Rashevsky, P.K.: Any two points of a totally nonholonomic space may be connected by an admissible line. Uch. Zap. Ped. Inst. Liebknechta Ser. Phys. Math. 2, 83–94 (1938). Russian Ruszkowski, B.: Hardy inequalities for the Heisenberg Laplacian on convex bounded polytopes, in preperation (2016) Ruzhansky, M., Suragan, D.: Local Hardy inequality for sums of squares. ArXiv e-prints, 1601.06157 (2016) Tidblom, J.: A Hardy inequality in the half-space. J. Funct. Anal. 221(2), 482–495 (2005)