Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hồi quy có trọng số theo không gian để đo lường vai trò của các yếu tố nội đô trong mô hình hóa tăng trưởng đô thị ở Kathmandu, Trung Himalaya
Tóm tắt
Nghiên cứu hiện tại phân tích sự phát triển đô thị theo không gian và thời gian tại vùng đô thị Kathmandu (KUA) và tác động của nó đến cơ sở hạ tầng sinh thái giữa năm 2000 và 2020. Một phương pháp hồi quy có trọng số theo không gian (GWR) đã được sử dụng để khảo sát các yếu tố nội đô tác động đến sự tăng trưởng đô thị trong giai đoạn 2000-2010 (thế kỷ 1) và 2010-2020 (thế kỷ 2), cũng như để dự đoán sự phát triển xây dựng cho năm 2030. Nghiên cứu này đóng góp quan trọng vào tài liệu mô hình hóa tăng trưởng đô thị bằng cách (a) khảo sát sáu kích thước khu phố khác nhau (từ 3 × 3 đến 13 × 13) để tính toán tỷ lệ ô đất xây dựng và (b) loại bỏ/lựa chọn các yếu tố biến động bằng cách kiểm tra tương quan và hồi quy lasso toàn cầu. Sự vượt trội của mô hình GWR so với mô hình hồi quy toàn cầu đã được đánh giá thông qua điểm số tiêu chí thông tin Akaike và kiểm tra trạng thái ổn định. Phân tích tăng trưởng đô thị theo thời gian của KUA cho thấy sự phát triển nhanh chóng ở cảnh quan miền núi từ 54.90 đến 166 km2 trong giai đoạn 2000-2020 và được dự đoán sẽ tăng lên 224.22 km2 trong khoảng thời gian từ 2000-2030. Điều này đã làm thay đổi đáng kể cảnh quan rừng-nông nghiệp trong giai đoạn 2000-2020 (111.2 km2) và dự kiến sẽ ảnh hưởng lớn đến một phần lớn cơ sở hạ tầng sinh thái (xanh-biru) (138 km2) vào năm 2030. Các phát hiện của nghiên cứu này có thể được sử dụng cho việc xây dựng chính sách, lập kế hoạch sử dụng đất hợp lý và phát triển đô thị bền vững.
Từ khóa
#tăng trưởng đô thị #hồi quy có trọng số theo không gian #Kathmandu #cơ sở hạ tầng sinh tháiTài liệu tham khảo
Adhvaryu, B. (2011). The Ahmedabad urban development plan-making process: A critical review. Planning, Practice & Research, 26(2), 229–250.
Aguayo, M. I., Wiegand, T., Azócar, G. D., Wiegand, K., & Vega, C. E. (2007). Revealing the driving forces of mid-cities urban growth patterns using spatial modeling: a case study of Los Ángeles. Chile. Ecology and Society, 12(1), 1–30.
Ahmad, T., Pandey, A. C., & Kumar, A. (2019). Evaluating urban growth and its implication on flood hazard and vulnerability in Srinagar city, Kashmir Valley, using geoinformatics. Arabian Journal of Geosciences, 12, 1–20.
Arsanjani, J. J., Kainz, W., & Mousivand, A. J. (2011). Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: The case of Tehran. International Journal of Image and Data Fusion, 2(4), 329–345.
Barredo, J. I., & Demicheli, L. (2003). Urban sustainability in developing countries’ megacities: Modelling and predicting future urban growth in Lagos. Cities, 20(5), 297–310.
Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771.
Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298.
Cao, Y., Zhang, X., Fu, Y., Lu, Z., & Shen, X. (2020). Urban spatial growth modeling using logistic regression and cellular automata: A case study of Hangzhou. Ecological Indicators, 113, 106200.
Charlton, M., Fotheringham, S., & Brunsdon, C. (2006). NCRM methods review papers, NCRM/006. Geographically weighted regression.
Chaudhari, S., & Kumar, A. (2020). Evaluating the contribution of urban ecosystem services in regulating thermal comfort. Spatial Information Research, 29, 71–82.
Chen, S., Feng, Y., Ye, Z., Tong, X., Wang, R., Zhai, S., ... & Jin, Y. (2020). A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules. GIScience & Remote Sensing, 57(7), 924–942.
Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning b: Planning and Design, 24(2), 247–261.
Cosentino, C., Amato, F., & Murgante, B. (2018). Population-based simulation of urban growth: The Italian case study. Sustainability, 10(12), 4838.
Diksha, & Kumar, A. (2017). Analysing urban sprawl and land consumption patterns in major capital cities in the Himalayan region using geoinformatics. Applied Geography, 89, 112–123. https://doi.org/10.1016/j.apgeog.2017.10.010
Diksha, & Kumar, A. (2022). Measuring the paradigm shift in ecological services in the Mountainous urban and peri-urban systems of the Himalayas. International Journal of Ecology and Environmental Sciences, 48, 243–250. https://doi.org/10.55863/ijees.2022.0105
Diksha, Kumar, A., & Lal, P. (2022). Analyzing climatic variability and extreme events in the Himalayan regions focusing on mountainous urban agglomerations. Geocarto International, 37(6), 14148–14170. https://doi.org/10.1080/10106049.2022.2086635
Ding, Y., & Peng, J. (2018). Impacts of urbanization of mountainous areas on resources and environment: Based on ecological footprint model. Sustainability, 10(3), 765.
Duwal, S., Amer, S., & Kuffer, M. (2018). Modelling urban growth in the Kathmandu Valley, Nepal. In GIS in sustainable urban planning and management (pp. 205–224). Boca Raton, MA, USA: CRC Press.
Duwal, S. (2013). Modeling urban growth in Kathmandu Valley (Doctoral Thesis, pp. 1–80). Retrieved September 11, 2020, from http://www.itc.nl/library
Feng, Y., Wang, R., Tong, X., & Zhai, S. (2021). Comparison of change and static state as the dependent variable for modeling urban growth. Geocarto International, 1–24. https://doi.org/10.1080/10106049.2021.1959657
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships (pp. 1–267). Chichester, UK: John Wiley & Sons.
Gao, C., Feng, Y., Tong, X., Lei, Z., Chen, S., & Zhai, S. (2020). Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Computers, Environment and Urban Systems, 81, 101459.
Gómez, J. A., Patiño, J. E., Duque, J. C., & Passos, S. (2019). Spatiotemporal modeling of urban growth using machine learning. Remote Sensing, 12(1), 109. https://doi.org/10.3390/rs12010109
Gómez, J. A., Guan, C., Tripathy, P., Duque, J. C., Passos, S., Keith, M., & Liu, J. (2021). Analyzing the spatiotemporal uncertainty in urbanization predictions. Remote Sensing, 2021(13), 512. https://doi.org/10.3390/rs13030512
Google Earth. (2021). Google earth ver.6.0.1.2032 (beta). Retrieved March 7, 2021, from https://www.google.com/earth
Gounaridis, D., Chorianopoulos, I., & Koukoulas, S. (2018). Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: The case of Athens. Applied Geography, 90, 134–144.
Haack, B. N., & Khatiwada, G. (2007). Rice and bricks: Environmental issues and mapping of the unusual crop rotation pattern in the Kathmandu Valley, Nepal. Environmental Management, 39(6), 774–782.
Heppenstall, A. J., Crooks, A. T., See, L. M., & Batty, M. (Eds.). (2011). Agent-based models of geographical systems (pp. 1–759). Dordrecht, Netherlands: Springer Netherlands.
Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86(3), 286–302.
Hosseinali, F., Alesheikh, A. A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, 105–113.
Hu, Z., & Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667–688. https://doi.org/10.1016/j.compenvurbsys.2006.11.001
Ishtiaque, A., Shrestha, M., & Chhetri, N. (2017). Rapid urban growth in the Kathmandu Valley, Nepal: Monitoring land use land cover dynamics of a himalayan city with landsat imageries. Environments, 4(4), 72.
Jain, G. V., & Sharma, S. A. (2018). Spatio-temporal analysis of urban growth in selected small, medium and large Indian cities. Geocarto International, 34(8), 887–908. https://doi.org/10.1080/10106049.2018.1450450
Kivell, P. (1993). Land and the city, patterns and processes of urban change. Geography, 78, 330–331.
Kohler, T., Pratt, J., Debarbieux, B., Balsiger, J., Rudaz, G., & Maselli, D. (1992). Sustainable mountain development, green economy and institutions. From Rio, 3–3.
Kumar, A., & Pandey, A. C. (2017). Analyzing seismic activities during 1900 to 2015 to assess urban risk in Nepal Himalayas using Geoinformatics. Journal of Urban and Environmental Engineering, 11(2), 133–141.
Kumar, A., Pandey, A. C., Hoda, N., & Jeyaseelan, A. T. (2011). Evaluation of urban sprawl pattern in the tribal-dominated cities of Jharkhand state. India. International Journal of Remote Sensing, 32(22), 7651–7675.
Kumar, A., Lal, P., Prasad, A., Tripathy, P., & Saikia, P. (2022). Analyzing urban damage and surface deformation based hazard-risk in Kathmandu city occurred during Nepal earthquake (2015) using SAR interferometry. Advances in Space Research. https://doi.org/10.1016/j.asr.2022.02.003
Kumar, M., Singh, R. B., Pravesh, R., Kumar, P., Tripathi, D. K., & Sahu, N. (2018). Urban growth dynamics and modelling using remote sensing data and multivariate statistical techniques. Current Science, 114(10), 2080–2091.
Kumari, S., Lal, P., & Kumar, A. (2022). Spatial heterogeneity for urban built-up footprint and its characterization using microwave remote sensing. Advances in Space Research. https://doi.org/10.1016/j.asr.2022.03.025
Laitiainen, P. (2014). Disasters in North kivu Province Democratic Republic of Congo. Emergency and Disaster Reports, 1(4), 1–52.
Lal, K., Kumar, D., & Kumar, A. (2017). Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 91–102.
Lal, P., Kumar, A., Prasad, A., Kumar, S., Saikia, P., Dayanandan, A., Roy, P. S., & Khan, M. L. (2021). COVID-19 pandemic hazard–risk–vulnerability analysis: A framework for an effective Pan-India response. Geocarto International, 1–12. https://doi.org/10.1080/10106049.2021.2012529
Li, H., Peng, J., Yanxu, L., & Yi’na, H. (2017). Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecological Indicators, 82, 50–60. https://doi.org/10.1016/j.ecolind.2017.06.032
Liao, F. H., & Wei, Y. H. (2014). Modeling determinants of urban growth in Dongguan, China: A spatial logistic approach. Stochastic Environmental Research and Risk Assessment, 28(4), 801–816. https://doi.org/10.1007/s00477-012-0620-y
Liao, J., Tang, L., Shao, G., Qiu, Q., Wang, C., Zheng, S., & Su, X. (2014). A neighbor decay cellular automata approach for simulating urban expansion based on particle swarm intelligence. International Journal of Geographical Information Science, 28(4), 720–738. https://doi.org/10.1080/13658816.2013.869820
Linard, C., Tatem, A. J., & Gilbert, M. (2013). Modelling spatial patterns of urban growth in Africa. Applied Geography, 44, 23–32. https://doi.org/10.1016/j.apgeog.2013.07.009
Luo, J., & Wei, Y. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), 51–64. https://doi.org/10.1016/j.landurbplan.2008.11.010
Maithani, S. (2010). Cellular automata based model of urban spatial growth. Journal of the Indian Society of Remote Sensing, 38(4), 604–610. https://doi.org/10.1007/s12524-010-0053-3
Malato, G. (2021). Feature selection in machine learning using Lasso regression. Medium. Retrieved February 12, 2022, from https://towardsdatascience.com/feature-selection-in-machine-learning-using-lasso-regression-7809c7c2771a
Mirbagheri, B., & Alimohammadi, A. (2017). Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Transactions in GIS, 21(6), 1280–1297.
Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141–153.
Mondal, B., Das, D. N., & Bhatta, B. (2017). Integrating cellular automata and Markov techniques to generate urban development potential surface: A study on Kolkata agglomeration. Geocarto International, 32(4), 401–419.
Munshi, T., Zuidgeest, M., Brussel, M., & van Maarseveen, M. (2014). Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, 68–86. https://doi.org/10.1016/j.cities.2014.02.007
Mustafa, A., Cools, M., Saadi, I., & Teller, J. (2017). Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529–540. https://doi.org/10.1016/j.landusepol.2017.10.009
Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J. (2018). Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156.
Nong, Y., & Du, Q. (2011). Urban growth pattern modeling using logistic regression. Geo-Spatial Information Science, 14(1), 62–67. https://doi.org/10.1007/s11806-011-0427-x
OpenStreetMap Contributors (OSM). (2020). Planet OSM. Retrieved December 28, 2020, from https://planet.osm.org
Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269.
Osman, T., Divigalpitiya, P., & Arima, T. (2016). Driving factors of urban sprawl in Giza Governorate of Greater Cairo Metropolitan Region using AHP method. Land Use Policy, 58, 21–31.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825–2830.
Pradhan, B., Sharma, P., & Pradhan, P. K. (2020). Urban growth and environment and health hazards in Kathmandu Valley, Nepal. In Urban health risk and resilience in Asian cities (293-324). Singapore: Springer.
Ramachandran, A., Snehalatha, C., Latha, E., Manoharan, M., & Vijay, V. (1999). Impacts of urbanisation on the lifestyle and on the prevalence of diabetes in native Asian Indian population. Diabetes Research and Clinical Practice, 44(3), 207–213.
Rimal, B., Baral, H., Stork, N. E., Paudyal, K., & Rijal, S. (2015). Growing city and rapid land use transition: Assessing multiple hazards and risks in the Pokhara Valley. Nepal. Land, 4(4), 957–978.
Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of Geo-Information, 7(4), 154.
Rincon-Ruiz, A., Pascual, U., & Flantua, S. (2013). Examining spatially varying relationships between coca crops and associated factors in Colombia, using geographically weight regression. Applied Geography, 37, 23–33.
Rodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 48, 52–63. https://doi.org/10.1016/j.apgeog.2014.01.011
Schneeberger, N., Burgi, M., Hersperger, A. M., & Ewald, K. C. (2007). Driving forces and rates of landscape change as a promising combination for landscape change research and application on the northern fringe of the Swiss Alps. Land Use Policy, 24, 349–361.
Shafizadeh-Moghadam, H., & Helbich, M. (2015). Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai. International Journal of Applied Earth Observation and Geoinformation, 35, 187–198.
Söderholm, P. (2020). The green economy transition: The challenges of technological change for sustainability. Sustainable Earth, 3(1), 1–11. https://doi.org/10.1186/s42055-020-00029-y
Thapa, R. B., & Murayama, Y. (2010). Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1), 70–83.
Thapa, R. B., & Murayama, Y. (2011). Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, 35(1), 25–34.
Thapa, R. B., Murayama, Y., & Ale, S. (2008). Kathmandu. Cities, 25(1), 45–57.
Tripathy, P., & Kumar, A. (2019). Monitoring and modelling spatio-temporal urban growth of Delhi using Cellular Automata and geoinformatics. Cities, 90, 52–63. https://doi.org/10.1016/j.cities.2019.01.021
Tripathy, P., Rao, P., Balakrishnan, K., & Malladi, T. (2020). An open-source tool to extract natural continuity and hierarchy of urban street networks. Environment and Planning B: Urban Analytics and City Science, 48(8), 2188–2205. https://doi.org/10.1177/2399808320967680
UNDP (2015). World urbanization prospects: The 2014 revision (pp. 1–138). New York, USA: United Nations Department of Economics and Social Affair, Population Division.
UN-Habitat. (2013). State of the world’s cities 2012/2013: Prosperity of cities. London: Routledge Press. Retrieved December 25, 2019, from https://unhabitat.org/annual-report-2020
United Nations. (2019). World urbanization prospects: the 2018 revision. Department of Economic and Social Affairs, Population Division.
Wang, J., & Mountrakis, G. (2011). Developing a multi-network urbanization model: A case study of urban growth in Denver, Colorado. International Journal of Geographical Information Science, 25(2), 229–253. https://doi.org/10.1080/13658810903473213
Wang, H., Stephenson, S. R., & Qu, S. (2019). Modeling spatially non-stationary land use/cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model. International Journal of Geographical Information Science, 33(7), 1313–1334.
Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49.
Xian, G., Shi, H., Zhou, Q., Auch, R., Gallo, K., Wu, Z., & Kolian, M. (2022). Monitoring and characterizing multi-decadal variations of urban thermal condition using time-series thermal remote sensing and dynamic land cover data. Remote Sensing of Environment, 269, 112803.
Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., & Huang, Z. (2006). Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape and Urban Planning, 75(1–2), 69–80.
Zang, S., & Huang, X. (2006). An aggregated multivariate regression land-use model and its application to land-use change processes in the Daqing region (northeast China). Ecological Modelling, 193, 503–516.
Zhang, X., & Li, H. (2018). Urban resilience and urban sustainability: What we know and what do not know? Cities, 72, 141–148.
Zhao, C., Jensen, J. L., & Weaver, R. (2020). Global and local modeling of land use change in the border cities of Laredo, Texas, USA and Nuevo Laredo, Tamaulipas, Mexico: A Comparative Analysis. Land, 9(10), 347. https://doi.org/10.3390/land9100347
Zhao, Y., Xie, D., Zhang, X., & Ma, S. (2021). Integrating spatial Markov chains and geographically weighted regression-based cellular automata to simulate urban agglomeration growth: A case study of the Guangdong-Hong Kong–Macao Greater Bay Area. Land, 10(6), 633. https://doi.org/10.3390/land10060633
Zhu, X. X., Qiu, C., Hu, J., Shi, Y., Wang, Y., Schmitt, M., & Taubenböck, H. (2022). The urban morphology on our planet–Global perspectives from space. Remote Sensing of Environment, 269, 112794.