Geographic and socio-economic variation in markers of indoor air pollution in Nepal: evidence from nationally-representative data
Tóm tắt
In low-income countries such as Nepal, indoor air pollution (IAP), generated by the indoor burning of biomass fuels, is the top-fourth risk factor driving overall morbidity and mortality. We present the first assessment of geographic and socio-economic determinants of the markers of IAP (specifically fuel types, cooking practices, and indoor smoking) in a nationally-representative sample of Nepalese households. Household level data on 11,040 households, obtained from the 2016 Nepal Demographic and Health Survey, were analyzed. Binary logistic regression analyses were conducted to assess the use of fuel types, indoor cooking practices, indoor smoking and IAP with respect to socio-economic indicators and geographic location of the household. More than 80% of the households had at least one marker of IAP: 66% of the household used unclean fuel, 45% did not have a separate kitchen to cook in, and 43% had indoor smoking. In adjusted binary logistic regression, female and educational attainment of household’s head favored cleaner indoor environment, i.e., using clean fuel, cooking in a separate kitchen, not smoking indoors, and subsequently no indoor pollution. In contrast, households belonging to lower wealth quintile and rural areas did not favor a cleaner indoor environment. Households in Province 2, compared to Province 1, were particularly prone to indoor pollution due to unclean fuel use, no separate kitchen to cook in, and smoking indoors. Most of the districts had a high burden of IAP and its markers. Fuel choice and clean indoor practices are dependent on household socio-economic status. The geographical disparity in the distribution of markers of IAP calls for public health interventions targeting households that are poor and located in rural areas.
Tài liệu tham khảo
World Health Organization: Household air pollution and health : Key facts. Geneva, 2018. Available at: https://bit.ly/2JwxaXG. Accessed March 2018.
World Health Organisation: The world health report 2002: reducing risks, promoting healthy life: World Health Organization; 2002. Available at: http://www.who.int/whr/2002/en/. Accessed Nov 2017.
Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, Cohen A, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(10010):2287–323.
World Health Organization: Global Health Risk Mortality and burden of disease attributable to selected major risks. Geneva, Switzerland; 2009. Available at: https://bit.ly/1tGJ5RS. Accessed Nov 2017.
Harrison RM, Thornton CA, Lawrence RG, Mark D, Kinnersley RP, Ayres JG. Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups. Occup Environ Med. 2002;59(10):671–9.
Rehfuess E, Mehta S, Pruss-Ustun A. Assessing household solid fuel use: multiple implications for the millennium development goals. Environ Health Perspect. 2006;114(3):373–8.
World Energy Council: World Energy Resources Bioenergy 2016. Available at: https://bit.ly/2tMoaUx. Accessed Nov 2017.
Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Pruss-Ustun A, Lahiff M, Rehfuess EA, Mishra V, Smith KR. Solid fuel use for household cooking: country and regional estimates for 1980-2010. Environ Health Perspect. 2013;121(7):784–90.
Ezzati M, Kammen DM. Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries. Environ Health Perspect. 2001;109(5):481–8.
Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. Health and household air pollution from solid fuel use: the need for improved exposure assessment. Environ Health Perspect. 2013;121(10):1120–8.
Gurung A, Bell ML. The state of scientific evidence on air pollution and human health in Nepal. Environ Res. 2013;124:54–64.
Chen C, Zeger S, Breysse P, Katz J, Checkley W, Curriero FC, Tielsch JM, editors. Estimating indoor PM2.5 and CO concentrations in households in southern Nepal: the Nepal Cookstove intervention trials. PLoS One. 2016;11(7):e0157984.
Mahapatra PS, Jain S, Shrestha S, Senapati S, Puppala SP. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal. Sci Total Environ. 2018;618:1331–42.
Bartington SE, Bakolis I, Devakumar D, Kurmi OP, Gulliver J, Chaube G, Manandhar DS, Saville NM, Costello A, Osrin D, et al. Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ Pollut. 2017;220(Pt A):38–45.
Devakumar D, Semple S, Osrin D, Yadav SK, Kurmi OP, Saville NM, Shrestha B, Manandhar DS, Costello A, Ayres JG. Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal. Environ Int. 2014;66:79–87.
Central Bureau of Statistics: National population and housing census 2011. National Report 2012. Available at: https://bit.ly/2DrKMAV. Accessed March 2017.
Naz S, Page A, Agho KE. Household air pollution and under-five mortality in India (1992–2006). Environ Health. 2016;15(1):54.
Rehfuess EA, Tzala L, Best N, Briggs DJ, Joffe M. Solid fuel use and cooking practices as a major risk factor for ALRI mortality among African children. J Epidemiol Community Health. 2009;63(11):887–92.
Naz S, Page A, Agho KE. Household air pollution and under-five mortality in Bangladesh (2004-2011). Int J Environ Res Public Health. 2015;12(10):12847–62.
Naz S, Page A, Agho KE. Household air pollution from use of cooking fuel and under-five mortality: the role of breastfeeding status and kitchen location in Pakistan. PLoS One. 2017;12(3):e0173256.
Rupakheti D, Oanh NTK, Rupakheti M, Sharma RK, Panday AK, Puppala SP, Lawrence MG. Indoor levels of black carbon and particulate matters in relation to cooking activities using different cook stove-fuels in rural Nepal. Energy for Sustainable Development. 2019;48:25–33.
Singh A, Tuladhar B, Bajracharya K, Pillarisetti A. Assessment of effectiveness of improved cook stoves in reducing indoor air pollution and improving health in Nepal. Energy Sustain Dev. 2012;16(4):406–14.
Nazaroff WW, Singer BC. Inhalation of hazardous air pollutants from environmental tobacco smoke in US residences. J Expo Anal Environ Epidemiol. 2004;14(Suppl 1):S71–7.
US Department of Health and Human Services: The health consequences of involuntary exposure to tobacco smoke: a report of the surgeon general. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health 2006, 709. Available at: https://bit.ly/2rROz2r
Lewis JJ, Pattanayak SK. Who adopts improved fuels and cookstoves? A systematic review. Environ Health Perspect. 2012;120(5):637–45.
Pradhan KM. A policy implementation of the federal constitution in Nepal. 2017. Search for Common Ground. Kathmandu, Nepal. Available at: https://www.sfcg.org/wpcontent/uploads/2015/04/NEPAL-Issue_Papers-Federalism.pdf. Accessed 8 Feb 2019.
The Demographic and Health Surveys (DHS) Program: List of Countries. Rockville, MD. Available at: https://dhsprogram.com/Where-We-Work/Country-List.cfm. Accessed March 2018.
Ministry of Health and Population Nepal: Nepal Demo-graphic and Health Survey 2016. Kathmandu: Ministry of Health, New ERA, ICF; 2016. Available at: https://bit.ly/2ztxAaC. Accessed March 2017.
Paudel U, Khatri U, Pant KP. Understanding the determinants of household cooking fuel choice in Afghanistan: a multinomial logit estimation. Energy. 2018;156:55–62.
Jadoo M: Geospatial analysis with PROC GMAP. Washington, D.C. 2016. Available at: https://analytics.ncsu.edu/sesug/2016/RV-278_Final_PDF.pdf
Ministry of Health and Population, Nepal Health Research Council, World Health Organisation: Non communicabl diseases risk factors: STEPS Survey Nepal 2013: Kathmandu; 2014. Available at: https://bit.ly/2J24mC0. Accessed Jan 2018.
Kurmi OP, Semple S, Steiner M, Henderson GD, Ayres JG. Particulate matter exposure during domestic work in Nepal. Ann Occup Hyg. 2008;52(6):509–17.
International Energy Agency. World energy outlook. Paris: IEA; 2011. Available at: https://bit.ly/2N1Tllf
Nasir ZA, Murtaza F, Colbeck I. Role of poverty in fuel choice and exposure to indoor air pollution in Pakistan. J Integrative Environ Sci. 2015;12(2):107–17.
Central Bureau of Statistics: Annual Household Survey 2014/15. Kathmandu, Nepal: Government of Nepal, National Planning Commission Secretariat Central Bureau of Statistics; 2016. Available at: http://103.69.124.159/index.php/catalog/66/download/974.
DeFries R, Pandey D. Urbanization, the energy ladder and forest transitions in India's emerging economy. Land Use Policy. 2010;27(2):130–8.
Asian Development Bank: Country Poverty Analysis (Detailed) Nepal. Asian Development Bank 2013, Kathmandu, Nepal. Available at: https://bit.ly/2ccmGuw
Acharya DR, Bell JS, Simkhada P, van Teijlingen ER, Regmi PR. Women's autonomy in household decision-making: a demographic study in Nepal. Reprod Health. 2010;7:15.
El Tayeb Muneer S, Mukhtar Mohamed el W: Adoption of biomass improved cookstoves in a patriarchal society: an example from Sudan. Sci Total Environ 2003, 307(1–3):259–266.
Oxford Poverty and Human Development Initiative: “Nepal Country Briefing”, Multidimensional Poverty Index Data Bank. Oxford: OPHI, University of Oxford; 2017. Available at: https://bit.ly/2Dt4Enl
Central Bureau of Statistics: Districts of Nepal, Indicators of Development Update 2003: International Centre for Integrated Mountain Development (ICIMOD/MENRIS) with the support of SNV-Nepal; Kathmandu, 20013. Available at: https://bit.ly/2xP7Bsl. Accessed March 2018.
Organisation for Economic Co-operation and Development: Energy in developing countries: a sectoral analysis: OECD 1994. Accessed March 2018.
Risal A, Manandhar K, Steiner TJ, Holen A, Koju R, Linde M. Estimating prevalence and burden of major disorders of the brain in Nepal: cultural, geographic, logistic and philosophical issues of methodology. J Headache Pain. 2014;15:51.