Các không gian quỹ đạo địa sinh của nhóm Lie hữu hạn cấp hai

Geometriae Dedicata - Tập 216 - Trang 1-17 - 2022
Nikolaos Panagiotis Souris1
1Department of Mathematics, University of Patras, Rio Patras, Greece

Tóm tắt

Các không gian quỹ đạo địa sinh là các không gian đồng nhất Riemann (G/H, g) mà trong đó các đường địa sinh là các quỹ đạo của các nhóm một tham số thuộc G. Chúng tôi phân loại các không gian quỹ đạo địa sinh liên thông đơn giản mà trong đó G là một nhóm Lie hữu hạn cấp hai. Chúng tôi chứng minh rằng các không gian duy nhất mà trong đó métrique g không được sinh ra từ một métrique bi-bất biến trên G là các mặt cầu nhất định và các không gian suy diễn, được trang bị các métrique sinh ra từ các phân hoạch Hopf.

Từ khóa


Tài liệu tham khảo

Agricola, I., Ferreira, A.C., Friedrich, T.: The classification of naturally reductive homogeneous spaces in dimensions \(n\le 6\). Differ. Geom. Appl. 39, 59–92 (2015) Alekseevsky, D.V., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 3769–3789 (2007) Alekseevsky, D.V., Nikonorov, Y.G.: Compact Riemannian manifolds with homogeneous geodesics. SIGMA Symmetry Integrability Geom. Methods Appl. 5(093), 16 pages (2009) Arvanitoyeorgos, A.: Homogeneous manifolds whose geodesics are orbits: recent results and some open problems. Irish Math. Soc. Bull. 79, 5–29 (2017) Berndt, J., Kowalski, O., Vanhecke, L.: Geodesics in weakly symmetric spaces. Ann. Global Anal. Geom. 15, 153–156 (1997) Berstovskii, V.N., Nikonorov, Y.G.: On \(\delta \)-homogeneous Riemannian manifolds. Differ. Geom. Appl. 26, 514–535 (2008) Berstovskii, V.N., Nikonorov, Y.G.: Clifford–Wolf homogeneous Riemannian manifolds. J. Differ. Geom. 82, 467–500 (2009) Berstovskii, V.N., Nikonorov, Y.G.: Generalized normal homogeneous Riemannian metrics on spheres and projective spaces. Ann. Global Anal. Geom. 45, 167–196 (2014) Borel, A., De Siebenthal, J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23, 200–221 (1949) Calvaruso, G., Zaeim, A.: Four-dimensional pseudo-Riemannian g.o. spaces and manifolds. J. Geom. Phys. 130, 63–80 (2018) Chen, H., Chen, Z., Wolf, J.: Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds. C. R. Math. 356, 846–851 (2018) Chen, Z., Nikonorov, Y.G.: Geodesic orbit Riemannian spaces with two isotropy summands I. Geom. Dedicata. 203, 163–178 (2019) D’Atri, J. E., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc. 18(215) (1979) Douglas, A., Repka, J.: Levi decomposable subalgebras of the symplectic algebra \(C_2\). J. Math. Phys. 56, 051703 (2015) Douglas, A., Repka, J.: Subalgebras of the rank two semisimple Lie algebras. Linear Multilinear Algebra 66, 2049–2075 (2018) Dynkin, E. B.: Semisimple subalgebras of semisimple Lie algebras. Mat. Sb. (N.S.) 30 (72) no. 2, 349–462 (1952) Gordon, C.S.: Homogeneous Riemannian manifolds whose geodesics are orbits, In: Topics in Geometry. Progress in Nonlinear Differential Equations and Their Applications, vol 20, Birkhäuser, Boston (1996) Gordon, C., Nikonorov, Y.G.: Geodesic orbit Riemannian structures on \(R^n\). J. Geom. Phys. 134, 235–243 (2018) Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978) Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Unione Mat. Ital. B 5(7), 189–246 (1991) Krämer, M.: Eine klassifikation bestimmter untergruppen kompakter zusammenhängender Liegruppen. Commun. Algebra 3, 691–737 (1975) Manturov, O.V.: Homogeneous asymmetric Riemannian spaces with an irreducible group of motions. Dokl. Akad. Nauk SSSR 141, 792–795 (1961) Manturov, O.V.: Riemannian spaces with orthogonal and symplectic groups of motions and an irreducible group of rotations. Dokl. Akad. Nauk SSSR 141, 1034–1037 (1961) Manturov, O.V.: Homogeneous Riemannian manifolds with irreducible isotropy group. Trudy Sere. Vector. Tenzor. Anal. 13, 68–145 (1966) Mayanskiy, E.: The subalgebras of \(G_2\). arXiv:1611.04070v1 (2016). https://arxiv.org/pdf/1611.04070v1.pdf Nikonorov, Yu.G.: Geodesic orbit Riemannian metrics on spheres. Vladikavkaz. Mat. Zh. 15(3), 67–76 (2013) Nikonorov, Yu.G.: On the structure of geodesic orbit Riemannian spaces. Ann. Global Anal. Geom. 52, 289–311 (2017) Nomizu, K.: Studies on Riemannian homogeneous spaces. Nagoya Math. J. 9, 43–56 (1955) Olmos, C., Reggiani, S., Tamaru, H.: The index of symmetry of compact naturally reductive spaces. Math. Z. 277, 611–628 (2014) Souris, N.P.: Geodesic orbit metrics in compact homogeneous manifolds with equivalent isotropy submodules. Transform. Groups 23, 1149–1165 (2018) Souris, N.P.: On a class of geodesic orbit spaces with abelian isotropy subgroup. Manuscripta Math. 166, 101–129 (2021) Storm, R.: The classification of 7- and 8-dimensional naturally reductive spaces. Can. J. Math. 72, 1246–1274 (2020) Tamaru, H.: Riemannian g.o. spaces fibered over irreducible symmetric spaces. Osaka J. Math. 36, 835–851 (1999) Wang, M., Ziller, W.: On isotropy irreducible Riemannian manifolds. Acta Math. 166, 223–261 (1991) Wolf, J.A.: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math. 120, 59–148 (1968) Wolf, J.A.: The geometry and structure of isotropy irreducible homogeneous spaces. correction Acta Math. 152, 141–142 (1984) Wolf, J.A.: Harmonic Analysis on Commutative Spaces. Mathematical Surveys and Monographs, Vol. 142, American Mathematical Society, Providence, RI (2007) Yan, Z., Deng, S.: Finsler spaces whose geodesics are orbits. Differ. Geom. Appl. 36, 1–23 (2014)