Địa hóa học của các loại đá komatiite và basalt trong các vành đai đá xanh Archean ở Karelia, Nga với trọng tâm vào các nguyên tố nhóm bạch kim

Springer Science and Business Media LLC - Tập 55 - Trang 971-990 - 2019
Fang-Fang Guo1, Sergei Svetov2, Wolfgang D. Maier3, Eero Hanski1, Sheng-Hong Yang1, Zoya Rybnikova2
1Oulu Mining School, Faculty of Technology, University of Oulu, Oulu, Finland
2Institute of Geology, Karelia Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
3School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK

Tóm tắt

Các loại đá komatiite trong thời kỳ Archean đóng vai trò quan trọng như một loại đá chủ cho các mỏ sulfide Ni-Cu trên thế giới. Trong nghiên cứu này, chúng tôi đã xem xét các loại đá komatiite và basalt komatiitic từ bốn khu vực trong vành đai đá xanh Vedlozero-Segozero và hai khu vực trong vành đai đá xanh Tikshozero, Karelia, Nga, nhằm xác định tiềm năng khoáng hóa sulfide Ni-Cu của chúng bằng cách sử dụng hóa học nguyên tố chalcophile. Nồng độ các nguyên tố nhóm bạch kim (PGE) trong các loại đá komatiitic kiểu Munro này tương tự như các loại đá komatiite và basalt komatiitic S-undersaturated toàn cầu, với nồng độ Pt và Pd trong khoảng 5–20 ppb và tỷ lệ Pd/Ir dao động từ < 10 (komatiites) đến > 15 (basalt komatiitic và basalt). Nói chung, các kim loại của nhóm nguyên tố có iridi (IPGEs; Ir, Ru, Os) thể hiện hành vi tương thích, giảm dần theo sự suy giảm MgO, trong khi các kim loại của nhóm palladium (PPGEs; Pt, Pd, Rh) thể hiện hành vi không tương thích. Mối tương quan yếu giữa Ir và MgO cho thấy rằng sự tinh chế tinh thể olivin không phải là yếu tố chính điều khiển hành vi của IPGE. Ngược lại, Ir, Ru và Os cho thấy mối tương quan tích cực với Cr, điều này nhất quán với hành vi tương thích của IPGEs trong chromit hoặc trong quá trình đồng kết tủa của cromit và khoáng chất nhóm bạch kim (PGMs). Palladium, Cu và Au đã có tính di động khác nhau trong quá trình biến đổi và biến chất, trong khi Pt dường như ít di động hơn. Một số mẫu từ khu vực Khizovaara cho thấy tỷ lệ (Pt/Ti)N thấp, Ni thấp, và La/Sm và La/Nb cao, điều này gợi ý sự bão hòa sulfide cục bộ do ô nhiễm thạch quyển. Tuy nhiên, tiềm năng của các vành đai đá xanh Karelian Nga cho khoáng hóa sulfide Ni-Cu được coi là tương đối thấp vì hầu hết các mẫu không cho thấy sự phong phú hay thiếu hụt của các nguyên tố chalcophile, và sự hiếm hoi của các môi trường dòng dung nham năng động, như được chỉ ra bởi sự khan hiếm của các adcumulates giàu olivin. Bên cạnh đó, có vẻ như không có các đá trầm tích sulfide lộ thiên trong khu vực.

Từ khóa

#komatiite #basalt #Karelia #Ni-Cu sulfide #platinum-group elements #địa hóa học.

Tài liệu tham khảo

Arestova NA, Chekulaev VP, Matveeva LV, Kucherovskii GA, Lepekhina EN, Sergeev SA (2012) New age data on the Archean rocks of the Vodlozero domain, Baltic Shield, and their significance for geodynamic reconstructions. Dokl Earth Sci 442:1–8 Arestova NA, Chekulaev VP, Lobach-Zhuchenko SB, Kucherovskii GA (2015) Formation of the Archean crust of the ancient Vodlozero domain (Baltic Shield). Stratigr Geol Correl 23:119–130 Arndt NT, Lesher CM, Barnes SJ (eds) (2008) Komatiite. Cambridge University Press, Cambridge Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky reef, Bushveld complex. J Petrol 41:545–561 Barnes SJ, Fiorentini ML (2008) Iridium, ruthenium and rhodium in komatiites: evidence for iridium alloy saturation. Chem Geol 257:44–58 Barnes SJ, Fiorentini ML (2012) Komatiite magmas and sulfide nickel deposits: a comparison of variably endowed Archean terranes. Econ Geol 107:755–780 Barnes SJ, Fiorentini ML, Duuring P, Grguric BA, Perring CS (2011) The perseverance and Mount Keith Ni deposits of the Agnew-Wiluna Belt, Yilgarn craton, Western Australia. In: Li C, Ripley E (eds) Magmatic Ni-cu and PGE deposits: geology, geochemistry, and genesis. Rev Econ Geol 17:51–88 Bibikova EV, Krylov IN (1983) Isotopic age of acid volcanics from Karelia. Dokl Akad Nauk SSSR 268:1231–1235 Bibikova EV, Samsonov AV, Shchipansky AA, Bogina MM, Gracheva TV, Makarov A (2003) The Hisovaara structure in the Tikshozero greenstone belt as a Late Archaean accreted island arc: isotopic geochronological and petrological evidence. Petrol 11:261–290 Brenan JM, McDonough WF, Daplé C (2003) Experimental constrains on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth Planet Sci Lett 212:135–150 Brenan JM, McDonough WF, Ash R (2005) An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth Planet Sci Lett 237:855–87 Brownscombe W, Ihlendeld C, Coppard J, Hartshorne C, Klatt S, Siikaluoma JK, Herrington RJ (2015) The Sakatti Cu-Ni-PGE sulfide deposit in northern Finland. In: Maier WD, Lahtinen R, O’Brien H (eds) Mineral deposits of Finland. Elsevier, Amsterdam, pp 211–252 Capobianco CJ, Drake MJ (1990) Partitioning of ruthenium, rhodium and palladium between spinel and silicate melt and implications for platinum group element fractionation trends. Geochim Cosmochim Acta 54:869–874 Fiorentini ML, Stone WE, Beresford SW, Barley ME (2004) Platinum-group element alloy inclusions in chromites from Archaean mafic-ultramafic units: evidence from the Abitibi and the Agnew-Wiluna greenstone belts. Mineral Petrol 82:341–355 Fiorentini ML, Barnes SJ, Lesher CM, Heggie G, Keays RR, Burnham OM (2010) Platinum-group element geochemistry of mineralized and nonmineralized komatiites and basalts. Econ Geol 105:795–823 Fiorentini ML, Beresford SW, Barley ME, Duuring P, Bekker A, Rosengren N, Cas R, Hronsky J (2012) District to camp controls on the genesis of komatiite-hosted nickel sulfide deposits, Agnew-Wiluna greenstone belt, Western Australia: insights from the multiple sulfur isotopes. Econ Geol 107:781–796 Fleet ME, Tronnes RG, Stone WE (1991) Partitioning of platinum group elements in the Fe-O-S system to 11 GPa and their fractionation in the mantle and meteorites. J Geophys Res 96:21949–21958 Fleet ME, Crocket JH, Liu M, Stone WE (1999) Laboratory partitioning of platinum group elements (PGE) and gold with application of magmatic sulfide-PGE deposits. Lithos 47:127–142 Godel B, Barnes SJ, Maier W (2007) Platinum-group elements in sulphide minerals, Platinum-group minerals and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48:1569–1604 Godel B, Barnes SJ, (2008). Image analysis and composition of platinum-group minerals in the J-M reef, Stillwater complex. Econ Geol 103:637–651 Hanski E (1980) Komatiitic and tholeiitic metavolcanics of the Siivikkovaara area in the Archean Kuhmo greenstone belt, eastern Finland. Bull Geol Soc Finl 52:67–100 Hanski E (2015) Synthesis of the geological evolution and metallogeny of Finland. In: Maier WD, Lahtinen R, O’Brien H (eds) Mineral deposits of Finland. Elsevier, Amsterdam, pp 51–88 Huhma H, Mänttäri I, Peltonen P, Kontinen A, Halkoaho T, Hanski E, Hokkanen T, Hölttä P, Juopperi H, Konnunaho J, Lahaye Y, Luukkonen E, Pietikäinen K, Pulkkinen A, Sorjonen-Ward P, Vaasjoki M, Whitehouse M (2012) The age of the Archaean greenstone belts in Finland. In: Hölttä P (eds) The Archean of the Karelia Province in Finland. Geol Surv Finland, Spec Paper 54:74–175 Hölttä P, Heilimo E, Huhma H, Kontinen A, Mertanen S, Mikkola P, Paavola J, Peltonen P, Semprich J, Slabunov A, Sorjonen-Ward P (2012) The Archaean of the Karelia Province in Finland. In: Hölttä P (eds), The Archean of the Karelia Province in Finland. Geol Surv Finland, Spec Paper 54:21–73 Jahn BM, Auvray B, Capdevila R, Cornichet J, Vidal F, Hameurt J (1980) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J Petrol 21:201–244 Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni-Cu sulphide deposits: evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral Deposita 45:241–257 Konnunaho JP, Hanski EJ, Bekker A, Halkoaho TAA, Hiebert R, Wing BA, Karinen T (2013) The Archean komatiite-hosted, PGE-bearing Ni-Cu sulfide deposit at Vaara, eastern Finland: evidence for assimilation of external sulfur and post-depositional desulfurization. Mineral Deposita 48:967–989 Konnunaho J, Halkoaho T, Hanski E, Törmänen T (2015) Komatiite-hosted Ni-Cu-PGE deposits in Finland. In: Maier W, O’Brien H, Lahtinen R (eds) Mineral deposits of Finland. Elsevier, Amsterdam, pp 93–127 Kozhevnikov VN (1992) Geology and geochemistry of the Archaean North Karelian greenstone structures. Karelian Research Center, Russian Academy of Sciences, Petrozavodsk (in Russian) Kozhevnikov VN (2000) Archean greenstone belts of the Karelian craton as accretionary orogens. Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk (in Russian) Kozhevnikov VN, Berezhnaya NG, Presnyakov SL, Lepekhina EN, Antonov AV, Sergeev SA (2006) Geochronology (SHRIMR-II) of zircon from Archean lithotectonic associations in the greenstone belts of the Karelia craton: implications for stratigraphic and geodynamic reconstructions. Stratigr Geol Correl 14:240–259 Kuleshevich LV, Gor’kovets VY (2008) Mineralogy of the Precambrian Southern Kostomuksha gold prospect in Karelia. Geol Ore Deposits 7:599–608 Lahaye Y, Barnes SJ, Frick LR, Lambert DD (2001) Re-Os isotopic study of komatiitic volcanism and magmatic sulfide formation in the southern Abitibi greenstone belt, Ontario, Canada. Can Mineral 39:473–490 Lesher CM, Barnes SJ (2009) Komatiite-associated Ni-Cu-PGE deposits. In: Li C, Ripley EM (eds) New developments in magmatic Ni-Cu and PGE deposits. Geological Publishing House, Beijing, pp 27–120 Lesher CM, Keays RR (2002) Komatiite-associated Ni-Cu-PGE deposits: geology, mineralogy, geochemistry and genesis. In: Cabri LJ (eds) The geology, geochemistry, mineralogy and beneficiation of platinum-group elements Can Inst Mining Metall Petrol, Spec Vol 54: 579–617 Lightfoot PC, Hawkesworth CJ (1997) Flood basalts and magmatic Ni, Cu, and PGE sulphide mineralization: comparative geochemistry of the Noril'sk Siberian traps and west Greenland sequences. In: Mahoney J, Coffin M (eds) Large igneous provinces: Continental, oceanic and planetary flood basalt volcanism. Am Geophys Union Monogr 100:357–380 Locmelis M, Fiorentini ML, Barnes SJ, Pearson NJ (2013) Ruthenium variation in chromite from komatiites and komatiitic basalts—a potential mineralogical indicator for nickel sulfide mineralization. Econ Geol 108:355–364 Locmelis M, Fiorentini ML, Barnes SJ, Hanski E, Kobussen AF (2018) Ruthenium in chromite as an indicator for the magmatic sulfide ore potential of mafic-ultramafic systems. Ore Geol Rev 97:152–170 Maier WD, Roelofse F, Barnes SJ (2003) The concentration of the platinum-group elements in South African komatiites: implications for mantle sources, melting regime and PGE fractionation during crystallization. J Petrol 44:1787–1804 Maier WD, Peltonen P, Halkoaho T, Hanski E (2013) Geochemistry of komatiites from the Tipasjärvi, Kuhmo, Suomussalmi, Ilomantsi and Tulppio greenstone belts, Finland: implications for tectonic setting and Ni sulphide prospectivity. Precambrian Res 228:63–84 Maier WD, Rasmussen B, Fletcher I, Godel B, Barnes SJ, Fisher L, Yang S, Huhma H, Lahaye Y (2015) Petrogenesis of the ∼2.77 Ga Monts de Cristal complex, Gabon: evidence for direct precipitation of Ptarsenides from basaltic magma. J Petrol 56:1285–1308 Makkonen HV, Halkoaho T, Konnunaho J, Rasilainen K, Kontinen A, Eilu P (2017) Ni-(Cu-PGE) deposits in Finland—geology and exploration potential. Ore Geol Rev 90:667–696 McDonald I, Viljoen KS (2006) Platinum-group element geochemistry of mantle eclogites: a reconnaissance study of xenoliths from the Orapa kimberlite, Botswana. Appl Earth Sci Trans Inst Mining Metall B 115:81–93 McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253 Melezhik VA, Medvedev PV, Svetov SA (2012) The Onega basin. In: Melezhik V, Prave AR, Fallick AE, Kump LR, Strauss H, Lepland A, Hanski EJ (eds) Reading the archive of Earth’s oxygenation. Volume 1: The Palaeoproterozoic of Fennoscandia as context for the Fennoscandian Arctic Russia – Drilling Early Earth Project. Springer-Verlag, Berlin, Heidelberg, pp 387–490 Mudd GM, Jowitt S (2014) A detailed assessment of global nickel resource trends and endowments. Ecol Geol 109:1813–1841 Nesbitt RW, Sun SS, Purvis AC (1979) Komatiites: geochemistry and genesis. Can Mineral 17:165–186 Pagé P, Barnes SJ, Bédard JH, Zientek ML (2012) In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chem Geol 302–303:3–15 Papunen H, Halkoaho T, Luukkonen E (2009) Archaean evolution of the Tipasjärvi-Kuhmo-Suomussalmi Greenstone Complex, Finland. Geol Surv Finl Bull 403 Park J-W, Kamenetsky V, Campbell I, Park G, Hanski E, Pushkarev YE (2017) Empirical constraints on partitioning of platinum group elements and trace elements into Cr-spinel from primitive terrestrial magmas. Geochim Cosmochim Acta 216:393–416 Puchtel IS, Humayun M (2001) Platinum group element fractionation in komatiitic basalt lava lake. Geochim Cosmochim Acta 65:2979–2993 Puchtel IS, Hofmann AW, Mezger K, Jochum KP, Shchipansky AA, Samsonov AV (1998) Oceanic plateau model for continental crustal growth in the Archaean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet Sci Lett 155:57–74 Puchtel IS, Hofmann AW, Amelin YV, Garbe-Schonberg C-D, Samsonov AV, Shchipansky AA (1999) Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt SE Baltic Shield: isotope and trace element constraints. Geochim Cosmochim Acta 63:3579–3595 Puchtel IS, Brügmann GE, Hofmann AW (2001) 187Os-enriched domain in an Archaean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet Sci Lett 186:513–526 Puchtel IS, Humayun M, Campbell AJ, Sproule RA, Lesher CM (2004) Platinum group element geochemistry of komatiites from the Alexo and Pyke Hill areas, Ontario. Geochim Cosmochim Acta 68:1361–1383 Puchtel IS, Humayun M, Walker RJ (2007) Os–Pb–Nd isotope and highly siderophile and lithophile trace element systematics of komatiitic rocks from the Volotsk suite, SE Baltic Shield. Precambrian Res 158:119–137 Righter K, Campbell AJ, Humayun M, Hervig RL (2004) Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim Cosmochim Acta 68:867–880 Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (Ed), The Crust. Elsevier, Amsterdam pp 1–70 Samsonov AB, Bibikova EV, Puchtel IS (1996) Isotopic and geochemical differences between acid volcanic rocks from greenstone belts of Karelia and their geotectonic significance. In: Correlation between geologic complexes of Fennoscandia. Mineral Publ., St. Petersburg, pp 74–75 (in Russian) 74 p Savard D, Barnes SJ, Meisel T (2010) Comparison between nickel-sulfur fire assay Te co-precipitation and isotope dilution with high-pressure asher acid digestion for the determination of platinum-group elements, rhenium and gold. Geostand Geoanal Res 34:281–291 Shchipansky AA, Samsonov AV, Bibikova EV, Babarina II, Konilov AN, Krylov KA, Slabunov AI, Bogina MM (2004) 2.8 Ga boninite-hosting partial suprasubduction zone ophiolite sequences from the North Karelian Greenstone Belt, NE Baltic Shield, Russia. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Elsevier, Amsterdam, pp 425–486 Slabunov AI, Lobach-Zhuchenko SB, Bibikova EV, Balagansky VV, Sorjonen-Ward P, Volodichev OI, Shchipansky AA, Svetov SA, Chekulaev VP, Arestova NA, Stepanov VS (2006) The archean of the baltic shield: Geology, geochronology, and geodynamic settings. Geotect 40:409–433 Sorjonen-Ward P, Luukkonen EJ (2005) Archean rocks. In: Lehtinen M, Nurmi P, Rämö T (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 9–93 Stone WE, Crocket JH (2003) Platinum-group element contents of chromites from mafic-ultramafic layered flows, Abitibi greenstone belt, Ontario: implications for geochemical fractionation and mineral exploration. Mineral Petrol 78:139–147 Stone WE, Crocket JH, Fleet ME (1990) Partitioning of palladium, iridium, platinum and gold between sulfide liquid and basalt melt at 1200°C. Geochim Cosmochim Acta 54:2341–2344 Svetov SA (2005) Magmatic systems in the ocean-continent transition zone in the Archean of the eastern Fennoscandian Shield. Karelian Research Center, Russian Academy of Sciences, Petrozavodsk (in Russian) Svetov SA, Smolkin VF (2003) Model P-T conditions of high-magnesia magma generation in the Precambrian of the Fennoscandian Shield. Geochem Int 41:799–812 Svetov SA, Svetova AI, Huhma H (2001) Geochemistry of the komatiite-tholeiite rock association in the Vedlozero-Segozero Archean greenstone belt, Central Karelia. Geochem Int 39:24–38 Svetov SA, Kudryashov NM, Ronkin YL, Huhma H, Svetova AI, Nazarova TN (2006) Mesoarchean island-arc association in the Central Karelian terrane, Fennoscandian Shield: new geochronological data. Dokl Earth Sci 406:103–106 Svetov SА, Svetova АI, Nazarova ТN (2010) Vedlozero-Segozero greenstone belt, Central Karelia: new age data and interpretation of the results. Geol Useful Miner Karelia 13:5–12 (in Russian) Weihed P, Arndt N, Billström K, Duchesne JC, Eilu P, Matinsson O, Papunen H, Lahtinen R (2005) Precambrian geodynamics and ore formation: the Fennoscandian Shield. Ore Geol Rev 27:273–322