Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea
Tóm tắt
Từ khóa
Tài liệu tham khảo
Albarède, 1981, 87Sr/86Sr ratios in hydrothermal waters and deposits from the East Pacific Rise at 21°N, Earth Planet. Sci. Lett., 55, 229, 10.1016/0012-821X(81)90102-3
Alt, 2003, Alteration of ocean crust, vol. 89, 7
Alt J. C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, vol. 91 (eds. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux and R. E. Thomson). AGU Monograph. American Geophysical Union, pp. 85–114.
Alt, 1999, The uptake of carbon during alteration of ocean crust, Geochim. Cosmochim. Acta, 63, 1527, 10.1016/S0016-7037(99)00123-4
Arnorsson, 1978, Aquifer chemistry of four high-temperature geothermal systems in Iceland, Geochim. Cosmochim. Acta, 42, 523, 10.1016/0016-7037(78)90202-8
Arnorsson, 1995, Processes controlling the distribution of boron and chlorine in natural waters in Iceland, Geochim. Cosmochim. Acta, 59, 4125, 10.1016/0016-7037(95)00278-8
Audetat, 1998, Formation of a magmatic–hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions, Science, 279, 2091, 10.1126/science.279.5359.2091
Auzende, 1996, “Shinkai 6500” dives in the Manus Basin: new STARMER Japanese–French program, JAMSTEC J. Deep Sea Res., 12, 323
Auzende, 1997, In situ geological and biological study of two hydrothermal zones in the Manus Basin (Papua New Guinea), C. R. Acad. Sci., Ser. Ia: Sci. Terre Planets, 325, 585
Auzende, 2000, The eastern and western tips of Manus Basin (Papua, New Guinea) explored by submersible: MANAUTE cruise, C. R. Acad. Sci., Ser. Ia: Sci. Terre Planets, 331, 119
Bach, 2003, Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the PACMANUS subseafloor hydrothermal system, Manus Basin, Papua New Guinea, Miner. Deposita, 38, 916, 10.1007/s00126-002-0325-0
Banner, 2004, Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy, Earth Sci. Rev., 65, 141, 10.1016/S0012-8252(03)00086-2
Berndt, 1988, Hydrothermal alteration processes at midocean ridges: experimental and theoretical constraints from Ca and Sr exchange reactions and Sr isotopic ratios, J. Geophys. Res., 93, 4573, 10.1029/JB093iB05p04573
Berndt, 1989, Plagioclase and epidote buffering of cation ratios in mid-ocean ridge hydrothermal fluids—experimental results in and near the supercritical region, Geochim. Cosmochim. Acta, 53, 2283, 10.1016/0016-7037(89)90351-7
Berndt, 1990, Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids, Geochim. Cosmochim. Acta, 54, 2235, 10.1016/0016-7037(90)90048-P
Berndt, 1993, Calcium and sodium exchange during hydrothermal alteration of calcic plagioclase at 400°C and 400 bars, Geochim. Cosmochim. Acta, 57, 4445, 10.1016/0016-7037(93)90494-H
Berndt, 1996, Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: experimental calibration and theoretical models, Geochim. Cosmochim. Acta, 60, 1595, 10.1016/0016-7037(96)00033-6
Binns, 1993, Actively forming polymetallic sulfide deposits associated with felsic volcanic-rocks in the Eastern Manus Back-Arc Basin, Papua New Guinea, Econ. Geol., 88, 2226, 10.2113/gsecongeo.88.8.2226
Binns, R. A., Scott, S. D., Gemmell, J. B., Crook, K., and Shipboard Scientific Party (1997) The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea. EOS Trans. AGU, 78(722), Fall Meet. Suppl. #V22E-02 (abstr.)
Binns R. A., Barriga F. J. A. S. and Miller D. J. (2007) Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, Eastern Manus Basin, Papua New Guinea. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 193 (eds. F. J. A. S. Barriga, R. A. Binns, D. J. Miller and P. M. Herzig). Ocean Drilling Program, pp. 1–71.
Bischoff, 1975, Seawater–basalt interaction at 200°C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry, Earth Planet. Sci. Lett., 25, 385, 10.1016/0012-821X(75)90257-5
Bischoff, 1978, Hydrothermal chemistry of seawater from 25 to 350°C, Am. J. Sci., 278, 838, 10.2475/ajs.278.6.838
Bischoff, 1985, Phase relations and adiabats in boiling seafloor geothermal systems, Earth Planet. Sci. Lett., 75, 327, 10.1016/0012-821X(85)90177-3
Bischoff, 1985, An empirical equation of state for hydrothermal seawater (3.2 percent NaCl), Am. J. Sci., 285, 725, 10.2475/ajs.285.8.725
Both, 1986, Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea, EOS Trans. AGU, 67, 489, 10.1029/EO067i021p00489
Bowers, 1985, An integrated chemical and stable-isotope model of the origin of midocean ridge hot spring systems, J. Geophys. Res., 90, 12583, 10.1029/JB090iB14p12583
Bowers, 1989, Stable isotope signatures of water–rock interaction in mid-ocean ridge hydrothermal systems: sulfur, oxygen and hydrogen, J. Geophys. Res., 94, 5775, 10.1029/JB094iB05p05775
Brimhall, 1983, Origin and ore-forming consequences of the advanced argillic alteration process in hypogene environments by magmatic gas contamination of meteoric fluids, Econ. Geol., 78, 73, 10.2113/gsecongeo.78.1.73
Burnham, 1979, Magmas and hydrothermal fluids, 71
Butterfield, 2003, Composition and evolution of hydrothermal fluids, vol. 89, 123
Butterfield, 1990, Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid–rock interaction, J. Geophys. Res.: Solid Earth Planets, 95, 12895, 10.1029/JB095iB08p12895
Butterfield, 1994, Geochemistry of North Cleft Segment vent fluids—temporal changes in chlorinity and their possible relation to recent volcanism, J. Geophys. Res.: Solid Earth, 99, 4951, 10.1029/93JB02798
Butterfield, 1994, Gradients in the composition of hydrothermal fluids from the Endeavour Segment vent field: phase separation and brine loss, J. Geophys. Res.: Solid Earth, 99, 9561, 10.1029/93JB03132
Butterfield, 1997, Seafloor eruptions and evolution of hydrothermal fluid chemistry, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 355, 369, 10.1098/rsta.1997.0013
Carroll, 1988, Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays, Am. Mineral., 73, 845
Carroll M. R. and Webster J. D. (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. In Volatiles in Magmas, vol. 30 (eds. M. R. Carroll and J. R. Holloway). Reviews in Mineralogy. Mineralogical Society of America, pp. 231–279.
Cartigny, 2001, Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge, Earth Planet. Sci. Lett., 194, 241, 10.1016/S0012-821X(01)00540-4
Charlou, 1996, Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermal field (26°N, MAR), Geophys. Res. Lett., 23, 3491, 10.1029/96GL02141
Charlou, 2002, Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR), Chem. Geol., 191, 345, 10.1016/S0009-2541(02)00134-1
Cheminée, 1991, Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount, Earth Planet. Sci. Lett., 107, 318, 10.1016/0012-821X(91)90079-W
Cline, 1991, Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?, J. Geophys. Res.: Solid Earth Planets, 96, 8113, 10.1029/91JB00053
Coltice, 2004, Carbon isotope cycle and mantle structure, Geophys. Res. Lett., 31, 10.1029/2003GL018873
Corliss, 1979, Submarine thermal springs on the Galápagos Rift, Science, 203, 1073, 10.1126/science.203.4385.1073
Craddock P. R. (2008) Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin. Ph.D. thesis, MIT–WHOI Joint Program in Oceanography, MIT.
Craddock, 2010, Insights into magmatic–hydrothermal processes in the Manus back-arc basin as recorded by anhydrite, Geochim. Cosmochim. Acta, 74, 5514, 10.1016/j.gca.2010.07.004
Craddock, 2010, Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins, Geochim. Cosmochim. Acta, 74, 5494, 10.1016/j.gca.2010.07.003
Craig, 1965, Deuterium and oxygen 18 variations in the ocean and marine atmosphere, 9
Craig, 1970, Abyssal carbon-13 in the South Pacific, J. Geophys. Res., 75, 691, 10.1029/JC075i003p00691
Cruse, 2006, Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 70, 2073, 10.1016/j.gca.2006.01.015
de Ronde, 1995, Fluid chemistry and isotopic characteristics of seafloor hydrothermal systems and associated VMS deposits: potential for magmatic contributions, vol. 23, 479
de Ronde, 2005, Evolution of a submarine magmatic–hydrothermal system: Brothers volcano, southern Kermadec arc, New Zealand, Econ. Geol., 100, 1097, 10.2113/gsecongeo.100.6.1097
Douville, 1999, Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems, Geochim. Cosmochim. Acta, 63, 627, 10.1016/S0016-7037(99)00024-1
Douville, 1999, As and Sb behaviour in fluids from various deep-sea hydrothermal systems, C. R. Acad. Sci., Ser. Ia: Sci. Terre Planets, 328, 97
Drummond S. E. (1981) Boiling and mixing of hydrothermal fluids: chemical effects on mineral precipitation. Ph.D. dissertation, Penn. State University.
Edmond, 1979, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galápagos data, Earth Planet. Sci. Lett., 46, 1, 10.1016/0012-821X(79)90061-X
Edmond, 1979, Formation of metal-rich deposits at ridge crests, Earth Planet. Sci. Lett., 46, 19, 10.1016/0012-821X(79)90062-1
Edmond J. M., Campbell A. C., Palmer M. R., Klinkhammer G., German C., Edmonds H. N., Elderfield H., Thompson G. and Rona P. (1995) Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: a new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide ore-bodies. In Hydrothermal Vents and Processes (eds. L. Parson and J. R. Dixon). Geological Society Special Publication No. 87, pp. 77–86.
Eickmann, 2009, Geochemical constraints on the modes of carbonate precipitation in peridotites from the Logatchev Hydrothermal Vent Field and Gakkel Ridge, Chem. Geol., 268, 97, 10.1016/j.chemgeo.2009.08.002
Embley, 2006, Long-term eruptive activity at a submarine arc volcano, Nature, 441, 494, 10.1038/nature04762
Fouquet, 1991, Hydrothermal activity and metallogenesis in the Lau Back-Arc Basin, Nature, 349, 778, 10.1038/349778a0
Fouquet, 1991, Hydrothermal activity in the Lau Back-Arc Basin—sulfides and water chemistry, Geology, 19, 303, 10.1130/0091-7613(1991)019<0303:HAITLB>2.3.CO;2
Fouquet, 1993, Metallogenesis in back-arc environments—the Lau Basin example, Econ. Geol., 88, 2154, 10.2113/gsecongeo.88.8.2154
Fournier, 1983, A method of calculating quartz solubilities in aqueous sodium-chloride solutions, Geochim. Cosmochim. Acta, 47, 579, 10.1016/0016-7037(83)90279-X
Fourre, 2006, Helium isotopic composition of hydrothermal fluids from the Manus back-arc Basin, Papua New Guinea, Geochem. J., 40, 245, 10.2343/geochemj.40.245
Foustoukos, 2007, Quartz solubility in the two-phase and critical region of the NaCl–KCl–H2O system: implications for submarine hydrothermal vent systems at 9°50′N East Pacific Rise, Geochim. Cosmochim. Acta, 71, 186, 10.1016/j.gca.2006.08.038
Foustoukos D. I. and Seyfried W. E. (2007b) Fluid phase separation processes in submarine hydrothermal systems. In Fluid–Fluid Interactions, vol. 65 (eds. A. Liebscher and C. A. Heinrich). Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, pp. 213–239.
Foustoukos, 2007, Trace element partitioning between vapor, brine and halite under extreme phase separation conditions, Geochim. Cosmochim. Acta, 71, 2056, 10.1016/j.gca.2007.01.024
Franklin, 1981, Volcanic-associated massive sulfide deposits, Econ. Geol., 75, 485
Gallant, 2006, Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge, Geochem. Geophys. Geosyst., 7, Q06018, 10.1029/2005GC001067
Galluccio, 2009, The mobility of fluoride in back-arc hydrothermal systems, Eos Trans. AGU, 90
Gamo, 1993, Hydrothermal plumes in the Eastern Manus Basin, Bismarck Sea—CH4, Mn, Al and pH anomalies, Deep Sea Res. Part I, 40, 2335, 10.1016/0967-0637(93)90108-F
Gamo, 1996, Chemical exploration of hydrothermal activity in the Manus Basin, Papua New Guinea (ManusFlux Cruise), JAMSTEC J. Deep Sea Res., 12, 335
Gamo, 1996, Chemical characteristics of hydrothermal fluids from the Manus back-arc basin, Papua New Guinea: I. Major chemical components, EOS Trans. AGU, 77
Gamo, 1996, Chemical characteristics of hydrothermal fluids from the TAG mound of the Mid-Atlantic Ridge in August 1994: implications for spatial and temporal variability of hydrothermal activity, Geophys. Res. Lett., 23, 3483, 10.1029/96GL02521
Gamo, 1997, Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea, Geology, 25, 139, 10.1130/0091-7613(1997)025<0139:AASRHF>2.3.CO;2
Gamo T., Ishibashi J., Tsunogai U., Okamura K. and Chiba H. (2006) Unique geochemistry of submarine hydrothermal fluids from arc–back-arc settings of the western Pacific. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, vol. 166 (eds. D. M. Christie, C. R. Fisher, S.-M. Lee and S. Givens). AGU Monograph. American Geophysical Union, pp. 147–161.
Gena, 2001, Acid–sulphate type alteration and mineralization in the DESMOS caldera, Manus back-arc basin, Papua New Guinea, Resour. Geol., 51, 31, 10.1111/j.1751-3928.2001.tb00079.x
German, 2003, Hydrothermal processes, vol. 6, 181
Giggenbach, 1992, Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin, Earth Planet. Sci. Lett., 113, 495, 10.1016/0012-821X(92)90127-H
Goff, 2000, Tritium and stable isotopes of magmatic waters, J. Volcanol. Geoth. Res., 97, 347, 10.1016/S0377-0273(99)00177-8
Goldfarb, 1983, The genesis of hot spring deposits on the East Pacific Rise, 21°N, Econ. Geol. Monogr., 5, 184
Hajash, 1982, An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite, Contrib. Mineral. Petrol., 78, 240, 10.1007/BF00398919
Hannington, 2001, First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposits off the north coast of Iceland, Mar. Geol., 177, 199, 10.1016/S0025-3227(01)00172-4
Haymon, 1981, Hot-spring deposits on the East Pacific Rise at 21°N—preliminary description of mineralogy and genesis, Earth Planet. Sci. Lett., 53, 363, 10.1016/0012-821X(81)90041-8
Hedenquist, 1994, The role of magmas in the formation of hydrothermal ore deposits, Nature, 370, 519, 10.1038/370519a0
Herzig, 1995, Polymetallic massive sulfides at the modern seafloor—a review, Ore Geol. Rev., 10, 95, 10.1016/0169-1368(95)00009-7
Holland, 1965, Some applications of thermochemical data to problems in ore deposits: II. Mineral assemblages and the composition of ore-forming fluids, Econ. Geol., 60, 1101, 10.2113/gsecongeo.60.6.1101
Horita, 1995, The activity–composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor–liquid water equilibration of NaCl solutions to 350°C, Geochim. Cosmochim. Acta, 59, 1139, 10.1016/0016-7037(95)00031-T
Hrischeva, 2007, Metalliferous sediments associated with presently forming volcanogenic massive sulfides: the SuSu knolls hydrothermal field, eastern manus basin, Papua New Guinea, Econ. Geol., 102, 55, 10.2113/gsecongeo.102.1.55
Humphris, 1995, The internal structure of an active sea-floor massive sulfide deposit, Nature, 377, 713, 10.1038/377713a0
Humphris S. E. and Tivey M. K. (2000) A synthesis of geological and geochemical investigations of the TAG hydrothermal field: insights into fluid flow and mixing processes in a hydrothermal system. In Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program (eds. Y. Dilek, E. M. Moores, D. Elthon and A. Nicholas). Geological Society of America, Special Paper 349, pp. 213–235.
Ishibashi, 1994, Helium and carbon geochemistry of hydrothermal fluids from the North Fiji Basin spreading ridge (Southwest Pacific), Earth Planet. Sci. Lett., 128, 183, 10.1016/0012-821X(94)90144-9
Ishibashi, 1995, Hydrothermal activity related to arc–backarc magmatism in the Western Pacific, 451
Ishibashi, 1996, Chemical characteristics of hydrothermal fluids from the Manus back-arc basin, Papua New Guinea: II. Gas components, EOS Trans. AGU, 77
Iwasaki, 1960, Genesis of sulfate in acid hot spring, Bull. Chem. Soc. Jpn., 33, 1018, 10.1246/bcsj.33.1018b
Javoy, 1978, Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in the tholeiitic magma: a preliminary study, Contrib. Mineral. Petrol., 67, 35, 10.1007/BF00371631
Kamenetsky, 2001, Parental basaltic melts and fluids in eastern Manus backarc Basin: implications for hydrothermal mineralisation, Earth Planet. Sci. Lett., 184, 685, 10.1016/S0012-821X(00)00352-6
Kamenetsky, 2002, Fluid bubbles in melt inclusions and pillow-rim glasses: high-temperature precursors to hydrothermal fluids?, Chem. Geol., 183, 349, 10.1016/S0009-2541(01)00383-7
Karl, 1988, Loihi-Seamount, Hawaii: a mid-plate volcano with a distinctive hydrothermal system, Nature, 335, 532, 10.1038/335532a0
Kelley D. S. and Früh-Green G. (2000) Volatiles in mid-ocean ridge environments. In Ophiolites and Ocean Crust: Insights from Field Studies and the Ocean Drilling Program (eds. Y. Dilek, E. M. Moores, D. Elthon and A. Nicholas). Geological Society of America, Special Paper 349, pp. 237–260.
Kelley D. S., Lilley M. D. and Früh-Green G. L. (2004) Volatiles in submarine environments: food for life. In The Subseafloor Biosphere at Mid-Ocean Ridges, vol. 144 (eds. W. S. D. Wilcock, E. F. DeLong, D. S. Kelley, J. A. Baross and S. C. Cary). AGU Monograph. American Geophysical Union, pp. 167–189.
Kendall, 1985, Multisample conversion of water to hydrogen by zinc for stable isotope determination, Anal. Chem., 57, 1437, 10.1021/ac00284a058
Kusakabe, 2000, Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes, J. Volcanol. Geoth. Res., 97, 287, 10.1016/S0377-0273(99)00161-4
Lackschewitz, 2004, Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea, Geochim. Cosmochim. Acta, 68, 4405, 10.1016/j.gca.2004.04.016
Lee, 2003, Multidisciplinary investigation of the Western Pacific I (2000–2001), Ocean Polar Res., 24, 131
Lee S. M. and Ruellan E. (2006) Tectonic and magmatic evolution of the Bismarck Sea, Papua New Guinea: review and new synthesis. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, vol. 166 (eds. D. M. Christie, C. R. Fisher, S.-M. Lee and S. Givens). AGU Monograph. American Geophysical Union, pp. 263–286.
Lilley, 2003, Magmatic events can produce rapid changes in hydrothermal vent chemistry, Nature, 422, 878, 10.1038/nature01569
Lisitsyn, 1993, A hydrothermal field in the rift zone of the Manus Basin, Bismarck Sea, Int. Geol. Rev., 35, 105, 10.1080/00206819309465517
Lowenstern, 2000, A review of the contrasting behavior of two magmatic volatiles: chlorine and carbon dioxide, J. Geochem. Explor., 69, 287, 10.1016/S0375-6742(00)00075-3
Lupton, 2006, Submarine venting of liquid carbon dioxide on a Mariana Arc volcano, Geochem. Geophys. Geosyst., 7, 1, 10.1029/2005GC001152
Lupton, 2008, Venting of a separate CO2-rich gas phase from submarine arc volcanoes: examples from the Mariana and Tonga-Kermadec arcs, J. Geophys. Res.: Solid Earth, 113, 10.1029/2007JB005467
Maris, 1984, Chemical evidence for advection of hydrothermal solutions in the sediments of the Galápagos mounds hydrothermal field, Geochim. Cosmochim. Acta, 48, 2331, 10.1016/0016-7037(84)90229-1
Martinez, 1996, Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus basin, Mar. Geophys. Res., 18, 203, 10.1007/BF00286078
Marty, 2001, Water-saturated oceanic lavas from the Manus Basin: volatile behaviour during assimilation-fractional crystallisation-degassing (AFCD), J. Volcanol. Geoth. Res., 108, 1, 10.1016/S0377-0273(00)00275-4
Massoth, 1989, Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge, Nature, 340, 702, 10.1038/340702a0
Mattey, 1991, Carbon dioxide solubility and carbon isotope fractionation in basaltic melt, Geochim. Cosmochim. Acta, 55, 3467, 10.1016/0016-7037(91)90508-3
McCollom, 2007, Abiotic synthesis of organic compounds in deep-sea hydrothermal environments, Chem. Rev., 107, 382, 10.1021/cr0503660
McDermott, 2008, On the re-dissolution of subsurface hydrothermal deposits at 9°50′N East Pacific Rise: implications from geochemical studies of high- and low-temperature fluids, EOS Trans. AGU, 89
McMurtry, 1993, Unusual geochemistry of hydrothermal vents on submarine arc volcanos—Kasuga Seamounts, Northern Mariana Arc, Earth Planet. Sci. Lett., 114, 517, 10.1016/0012-821X(93)90080-S
Michael, 1989, Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components, Geochim. Cosmochim. Acta, 53, 3131, 10.1016/0016-7037(89)90094-X
Michael, 1998, Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts, J. Geophys. Res.: Solid Earth, 103, 18325, 10.1029/98JB00791
Michard, 1984, Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site, Earth Planet. Sci. Lett., 67, 297, 10.1016/0012-821X(84)90169-9
Mills, 1999, Seawater entrainment and fluid evolution within the TAG hydrothermal mound: evidence from analyses of anhydrite, 225
Monecke, 2007, Textural and mineralogical changes associated with the incipient hydrothermal alteration of glassy dacite at the submarine PACMANUS hydrothermal system, eastern Manus Basin, J. Volcanol. Geoth. Res., 160, 23, 10.1016/j.jvolgeores.2006.08.007
Moss, 2001, Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea, Can. Mineral., 39, 957, 10.2113/gscanmin.39.4.957
Mottl, 1978, Chemical exchange during hydrothermal alteration of basalt by seawater: I. Experimental results for major and minor components of seawater, Geochim. Cosmochim. Acta, 42, 1103, 10.1016/0016-7037(78)90107-2
Mottl, 1979, Chemical exchange during hydrothermal alteration of basalt by seawater: II. Experimental results for Fe, Mn, and sulfur species, Geochim. Cosmochim. Acta, 43, 869, 10.1016/0016-7037(79)90225-4
Nakagawa, 2006, Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc, Environ. Microbiol., 8, 37, 10.1111/j.1462-2920.2005.00884.x
Nilsson, 1993, Sulfur speciation, oxidation state, and sulfur concentration in backarc magmas, Geochim. Cosmochim. Acta, 57, 3807, 10.1016/0016-7037(93)90158-S
Ogawa, 2005, An experimental study on felsic rock–artificial seawater interaction: implications for hydrothermal alteration and sulfate formation in the Kuroko mining area of Japan, Mineral. Deposita, 39, 813, 10.1007/s00126-004-0454-8
Ohmoto, 1979, Isotopes of sulfur and carbon, 509
Ohmoto, 1982, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems, Geochim. Cosmochim. Acta, 46, 1727, 10.1016/0016-7037(82)90113-2
Ohmoto H. (1986) Stable isotope geochemistry of ore deposits. In Stable Isotopes in High Temperature Geological Processes, vol. 16 (eds. J. W. Valley, H. P. Taylor and J. R. O’Neil). Reviews in Mineralogy. Mineralogical Society of America, pp. 491–559.
Ohmoto, 1997, Sulfur and carbon isotopes, 517
Park, 2010, Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea, Chem. Geol., 269, 339, 10.1016/j.chemgeo.2009.10.008
Paulick, 2004, Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papau New Guinea, ODP Leg 193), J. Volcanol. Geoth. Res., 130, 31, 10.1016/S0377-0273(03)00275-0
Paulick, 2006, Phyllosilicate alteration mineral assemblages in the active subsea-floor Pacmanus hydrothermal system, Papua New Guinea, ODP Leg 193, Econ. Geol., 101, 633, 10.2113/gsecongeo.101.3.633
Pearce J. A. and Stern R. J. (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, vol. 166 (eds. D. M. Christie, C. R. Fisher, S.-M. Lee and S. Givens). AGU Monograph. American Geophysical Union, pp. 63–86.
Pineau, 1976, 13C/12C ratios of rocks and inclusions in popping rocks of the mid-atlantic ridge and their bearing on the problem of isotopic composition of deep-seated carbon, Earth Planet. Sci. Lett., 29, 413, 10.1016/0012-821X(76)90146-1
Pineau, 1998, Water solubility and D/H fractionation in the system basaltic andesite–H2O at 1250°C and between 0.5 and 3 kbars, Chem. Geol., 147, 173, 10.1016/S0009-2541(97)00180-0
Proskurowski, 2007, Volatile chemistry at Lau Basin hydrothermal sites: basin-wide trends of slab carbonate influence and suggestions of abiotic methane oxidation at the Mariner vent site, EOS Trans. AGU, 88
Redfield A. C. and Friedman I. (1965) Factors affecting the distribution of deuterium in the ocean. In Symposium on Marine Geochemistry (eds. D. R. Schink and J. T. Corless). Occasional Publication No. 3. Narragansett Marine Laboratory, University of Rhode Island, pp. 149–168.
Rees, 1978, Sulfur isotopic composition of ocean water sulfate, Geochim. Cosmochim. Acta, 42, 377, 10.1016/0016-7037(78)90268-5
Resing, 2007, Venting of acid–sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc, Econ. Geol., 102, 1047, 10.2113/gsecongeo.102.6.1047
Resing, 2009, Chemistry of hydrothermal plumes above submarine volcanoes of the Mariana Arc, G Cubed, 10
Roberts, 2003, Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: the Sr and S isotope evidence, Geology, 31, 805, 10.1130/G19716.1
Rosenbauer R. J. and Bischoff J. L. (1983) Uptake and transport of heavy metals by heated seawater: a summary of experimental results. In Hydrothermal Processes at Seafloor Spreading Centers, NATO Conference Series, vol. IV, no. 12 (Ed: P. Rona, K. Bostrom, L. Laubier, and K. Smith). Plenum Press.
Ryan, 1993, The systematics of boron abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 57, 1489, 10.1016/0016-7037(93)90008-K
Sakai, 1990, Unique chemistry of the hydrothermal solution in the Mid-Okinawa Trough Backarc Basin, Geophys. Res. Lett., 17, 2133, 10.1029/GL017i012p02133
Sakai, 1990, Venting of carbon dioxide-rich fluid and hydrate formation in Mid-Okinawa Trough Backarc Basin, Science, 248, 1093, 10.1126/science.248.4959.1093
Sarmiento, 2006
Scaillet, 2003, Experimental constraints on volatile abundances in arc magmas and their implications for degassing processes, Geol. Soc. Lond. Spec. Publ., 213, 23, 10.1144/GSL.SP.2003.213.01.03
Schoofs, 2000, Depletion of a brine layer at the base of ridge–crest hydrothermal systems, Earth Planet. Sci. Lett., 180, 341, 10.1016/S0012-821X(00)00184-9
Sedwick, 1992, Chemistry of hydrothermal solutions from Pele Vents, Loihi Seamount, Hawaii, Geochim. Cosmochim. Acta, 56, 3643, 10.1016/0016-7037(92)90159-G
Seewald, 1990, The effect of temperature on metal mobility in subseafloor hydrothermal systems: constraints from basalt alteration experiments, Earth Planet. Sci. Lett., 101, 388, 10.1016/0012-821X(90)90168-W
Seewald, 2002, A new gas-tight isobaric sampler for hydrothermal fluids, Deep Sea Res. Part I, 49, 189, 10.1016/S0967-0637(01)00046-2
Seewald, 2003, Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity, Earth Planet. Sci. Lett., 216, 575, 10.1016/S0012-821X(03)00543-0
Seewald, 2005, Aqueous volatiles in Lau Basin hydrothermal fluids, EOS Trans. AGU, 86
Seyfried, 1981, Experimental seawater–basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals, Geochim. Cosmochim. Acta, 45, 135, 10.1016/0016-7037(81)90157-5
Seyfried, 1982, Hydrothermal alteration of basalt by seawater under seawater-dominated conditions, Geochim. Cosmochim. Acta, 46, 985, 10.1016/0016-7037(82)90054-0
Seyfried, 1984, Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron, Geochim. Cosmochim. Acta, 48, 557, 10.1016/0016-7037(84)90284-9
Seyfried, 1985, Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: influence of fluid pressure and basalt composition and crystallinity, Geochim. Cosmochim. Acta, 49, 2545, 10.1016/0016-7037(85)90123-1
Seyfried, 1987, Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges, Annu. Rev. Earth Planet. Sci., 15, 317, 10.1146/annurev.ea.15.050187.001533
Seyfried, 1995, The hydrothermal chemistry of fluoride in seawater, Geochim. Cosmochim. Acta, 59, 1063, 10.1016/0016-7037(95)00023-S
Seyfried W. E. and Ding K. (1995b) Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, vol. 91 (eds. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux and R. E. Thomson). AGU Monograph. American Geophysical Union, pp. 248–272.
Shanks, 1987, Stable isotope studies of vent fluids and chimney minerals, Southern Juan de Fuca Ridge: sodium metasomatism and seawater sulfate reduction, J. Geophys. Res.: Solid Earth Planets, 92, 11387, 10.1029/JB092iB11p11387
Shanks W. C., Böhlke J. K. and Seal R. R. (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, vol. 91 (eds. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux and R. E. Thomson). AGU Monograph. American Geophysical Union, pp. 194–221.
Shanks W. C. (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In Stable Isotope Geochemistry, vol. 43 (eds. J. W. Valley and D. R. Cole). Reviews in Mineralogy & Geochemistry. Mineralogical Society of America, pp. 469–525.
Shaw, 2004, The CO2–He–Ar–H2O systematics of the Manus back-arc basin: resolving source composition from degassing and contamination effects, Geochim. Cosmochim. Acta, 68, 1837, 10.1016/j.gca.2003.10.015
Shaw, 2008, Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle, Earth Planet. Sci. Lett., 275, 138, 10.1016/j.epsl.2008.08.015
Shikazono, 1983, The partitioning of Sr between anhydrite and aqueous solutions from 150 to 250°C, the Kuroko and related volcanogenic massive sulfide deposits, Econ. Geol. Monogr., 5, 320
Shinohara, 1994, Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt: implications for chlorine and metal transport, Geochim. Cosmochim. Acta, 58, 5215, 10.1016/0016-7037(94)90306-9
Shiraki, 1987, Experimental studies on rhyolite–seawater and andesite–seawater interactions at 300°C and 1000 bars, Geochem. J., 21, 139, 10.2343/geochemj.21.139
Shmulovich, 1999, Stable isotope fractionation between liquid and vapour in water–salt systems up to 600°C, Chem. Geol., 157, 343, 10.1016/S0009-2541(98)00202-2
Simmons, 2006, Gold in magmatic–hydrothermal solutions and the rapid formation of a giant ore deposit, Science, 314, 288, 10.1126/science.1132866
Sinton, 2003, Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea, J. Petrol., 44, 159, 10.1093/petrology/44.1.159
Snyder, 2002, Iodine isotope ratios and halide concentrations in fluids of the Satsuma-Iwojima volcano, Japan, Earth Planets Space, 54, 265, 10.1186/BF03353026
Spencer, 1970, Trace element calibrations and profiles at the GEOSECS test station in the Northeast Pacific Ocean, J. Geophys. Res., 75, 7688, 10.1029/JC075i036p07688
Spivack, 1987, Boron isotope exchange between seawater and the oceanic crust, Geochim. Cosmochim. Acta, 51, 1033, 10.1016/0016-7037(87)90198-0
Stoffers, 2006, Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific, Geology, 34, 453, 10.1130/G22227.1
Sun, 2004, Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization, Nature, 431, 975, 10.1038/nature02972
Sun, 2007, Chlorine in submarine volcanic glasses from the eastern Manus basin, Geochim. Cosmochim. Acta, 71, 1542, 10.1016/j.gca.2006.12.003
Takai, 2008, Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin, J. Geophys. Res.: Biogeosci., 113
Taylor, 1979, Bismarck Sea: evolution of a back-arc basin, Geology, 7
Taylor, 1994, Extensional transform zones and oblique spreading centers, J. Geophys. Res.: Solid Earth, 99, 19707, 10.1029/94JB01662
Taylor, 1979, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits, 236
Taylor H. P. (1986) Magmatic volatiles: isotopic variation of C, H, and S. In Stable Isotopes in High Temperature Geological Processes, vol. 16 (eds. J. W. Valley, H. P. Taylor and J. R. O’Neil). Reviews in Mineralogy. Mineralogical Society of America, pp. 185–225.
Taylor, 1997, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits, 229
Tivey M., Bach W., Seewald J., Tivey M. K., Vanko D. A., and the Shipboard Science Party (2006) Cruise Report for R/V Melville Cruise MGLN06MV—Hydrothermal Systems in the Eastern Manus Basin: Fluid Chemistry and Magnetic Structure as Guides to Subseafloor Processes. Woods Hole Oceanographic Institution. http://hdl.handle.net/1912/4077.
Tivey, 1995, Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data, J. Geophys. Res.: Solid Earth, 100, 12527, 10.1029/95JB00610
Trefry, 1994, Trace metals in hydrothermal solutions from cleft segment on the southern Juan de Fuca Ridge, J. Geophys. Res.: Solid Earth, 99, 4925, 10.1029/93JB02108
Tregoning, 2002, Plate kinematics in the western Pacific derived from geodetic observations, J. Geophys. Res.: Solid Earth, 107, 10.1029/2001JB000406
Tsunogai, 1994, Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin Arc: differences from subaerial volcanism, Earth Planet. Sci. Lett., 126, 289, 10.1016/0012-821X(94)90113-9
Tufar, 1990, Modern hydrothermal activity, formation of complex massive sulfide deposits and associated vent communities in the Manus Back-arc Basin (Bismarck Sea, Papua New Guinea), Mitteilung der Osterreichen Geologischen Gesellshaft, 82, 183
Vanko, 2004, Fluid inclusion evidence for subsurface phase separation and variable fluid mixing regimes beneath the deep-sea PACMANUS hydrothermal field, Manus Basin back arc rift, Papua New Guinea, J. Geophys. Res.: Solid Earth, 109, 10.1029/2003JB002579
Von Damm, 1985, Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise, Geochim. Cosmochim. Acta, 49, 2197, 10.1016/0016-7037(85)90222-4
Von Damm, 1987, Chemistry of hydrothermal solutions from the Southern Juan De Fuca Ridge, J. Geophys. Res.: Solid Earth Planets, 92, 11334, 10.1029/JB092iB11p11334
Von Damm, 1988, Systematics of and postulated controls on submarine hydrothermal solution chemistry, J. Geophys. Res.: Solid Earth Planets, 93, 4551, 10.1029/JB093iB05p04551
Von Damm, 1990, Seafloor hydrothermal activity—black smoker chemistry and chimneys, Annu. Rev. Earth Planet. Sci., 18, 173, 10.1146/annurev.ea.18.050190.001133
Von Damm, 1991, Quartz solubility in hydrothermal seawater: an experimental study and equation describing quartz solubility for up to 0.5M NaCl solutions, Am. J. Sci., 291, 977, 10.2475/ajs.291.10.977
Von Damm K. L. (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal systems. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, vol. 91 (eds. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux and R. E. Thomson). AGU Monograph. American Geophysical Union, pp. 222–247.
Von Damm, 1998, The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge, Earth Planet. Sci. Lett., 160, 521, 10.1016/S0012-821X(98)00108-3
Von Damm, 2005, The Escanaba Trough, Gorda Ridge hydrothermal system: temporal stability and subseafloor complexity, Geochim. Cosmochim. Acta, 69, 4971, 10.1016/j.gca.2005.04.018
Wallace, 2005, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geoth. Res., 140, 217, 10.1016/j.jvolgeores.2004.07.023
Webster, 2004, The exsolution of magmatic hydrosaline chloride liquids, Chem. Geol., 210, 33, 10.1016/j.chemgeo.2004.06.003
Welhan, 1988, Origins of methane in hydrothermal systems, Chem. Geol., 71, 183, 10.1016/0009-2541(88)90114-3
Woodruff, 1988, Sulfur isotope study of chimney minerals and vent fluids from 21° N, East Pacific Rise—hydrothermal sulfur sources and disequilibrium sulfate reduction, J. Geophys. Res.: Solid Earth Planets, 93, 4562, 10.1029/JB093iB05p04562
Yang, 1996, Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system, Nature, 383, 420, 10.1038/383420a0
Yang, 2002, Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific, Econ. Geol., 97, 1079, 10.2113/gsecongeo.97.5.1079
Yang, 2005, Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: evidence from melt inclusions, Econ. Geol., 100, 1085, 10.2113/gsecongeo.100.6.1085
Yang K. H. and Scott S. D. (2006) Magmatic fluids as a source of metals in seafloor hydrothermal systems. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, vol. 166 (eds. D. M. Christie, C. R. Fisher, S.-M. Lee and S. Givens). AGU Monograph. American Geophysical Union, pp. 163–184.