Geochemistry, geochronology, and isotopic studies of Paleoproterozoic magmatic rocks from outer Kumaun Lesser Himalaya, India: Implication on petrogenesis and crustal evolution of northern Indian Block
Tài liệu tham khảo
Abdel-Rahman, 1994, Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas, J. Petrol., 35, 525, 10.1093/petrology/35.2.525
Agangi, 2011, Magma chamber dynamics in a silicic LIP revealed by quartz: The Mesoproterozoic Gawler Range Volcanics, Lithos, 126, 68, 10.1016/j.lithos.2011.06.005
Ahmad, 1999, Geochemistry of Precambrian mafic magmatic rocks of the Western Himalaya, India: petrogenetic and tectonic implications, Chem. Geol., 160, 103, 10.1016/S0009-2541(99)00063-7
Andersson, 2006, 1.8 Ga magmatism in the Fennoscandian Shield; lateral variations in subcontinental mantle enrichment, Lithos, 86, 110, 10.1016/j.lithos.2005.04.001
Antonio, 2017, Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian craton, Gondwana Res., 49, 106, 10.1016/j.gr.2017.05.006
Arya, 2018, Geochemistry and Petrogenesis of Mafic Dykes in Paleoproterozoic Cu(±Mo±Au) Hosting Granitoids at Malanjkhand Mine Area, Central India, J. Geosci. Res., 3, 121
Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib. to Mineral. Petrol. 144, 347–364. doi.org/10.1007/ s00410-002-0402-5.
Belousova, 2002, Zircon trace-element compositions as indicators of source rock type, Contrib. to Mineral. Petrol., 143, 602, 10.1007/s00410-002-0364-7
Bhat, 1992, Sm-Nd age and petrogenesis of Rampur metavolcanic rocks, NW Himalayas: Late Archaean relics in the Himalayan belt, Precambrian Res., 56, 191, 10.1016/0301-9268(92)90101-S
Blichert-Toft, 2008, The Hf isotopic composition of zircon reference material 91500, Chem. Geol., 253, 252, 10.1016/j.chemgeo.2008.05.014
Blundy, 1994, Prediction of crystal–melt partition coefficients from elastic moduli, Nature, 372, 452, 10.1038/372452a0
Bonin, 2007, A-type granites and related rocks: Evolution of a concept, problems and prospects, Lithos, 97, 1, 10.1016/j.lithos.2006.12.007
Bónová, 2010, Biotite from Čierna hora Mountains granitoids (Western Carpathians, Slovakia) and estimation of water contents in granitoid melts, Geol. Carpath., 61, 3, 10.2478/v10096-009-0040-1
Bora, 2015, Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism, Int. Geol. Rev., 57, 1686, 10.1080/00206814.2015.1032372
Bouvier, 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sci. Lett., 273, 48, 10.1016/j.epsl.2008.06.010
Bryan, 2007, Silicic Large Igneous Provinces, Episodes, 30, 20, 10.18814/epiiugs/2007/v30i1/004
Bryan, 2008, Revised definition of Large Igneous Provinces (LIPs), Earth Sci. Rev., 86, 175, 10.1016/j.earscirev.2007.08.008
Bucholz, 2018, A Comparison of Oxygen Fugacities of Strongly Peraluminous Granites across the Archean-Proterozoic Boundary, J. Petrol., 59, 2123, 10.1093/petrology/egy091
Carmichael, 1990, The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases, Rev. Mineral. Geochem., 24, 191
Castro, 1991, H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature, Earth Sci. Rev., 31, 237, 10.1016/0012-8252(91)90020-G
Chakungal, 2010, Provenance of the Greater Himalayan sequence: Evidence from mafic granulites and amphibolites in NW Bhutan, Tectonophysics, 480, 198, 10.1016/j.tecto.2009.10.014
Chappell, 1974, Two contrasting granite types. Pacif. Geol., 8, 173
Clarke, 1996, Two centuries after Hutton’s ‘Theory of the Earth’: the status of granite science. Earth Environ, Sci. Trans. R. Soc. Edinb., 87, 353
Clemens, 1986, Origin of an A-type granite; experimental constraints, Am. Mineral., 71, 317
Condie, 1998, Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet, Sci. Lett., 163, 97
Condie, 2000, Episodic continental growth models: afterthoughts and extensions, Tectonophysics, 322, 153, 10.1016/S0040-1951(00)00061-5
Condie, 2002, Continental growth during a 1.9-Ga superplume event, J. Geodyn., 34, 249, 10.1016/S0264-3707(02)00023-6
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. and Kinny, P., 2003. Atlas of zircon textures. In: Hanchar, J. M. and Hoskin, P. W. O. (Eds.), Zircon. Rev. Mineral. Geochem. 53, 469–499.
Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The Interpretation of Igneous Rocks, 1st ed. Springer science and business Media. doi.org/10.1007/978-94-017-3373-1.
da Silva, 2016, Bimodal magmatism of the Tucumã area, Carajás province: U-Pb geochronology, classification and processes, J. S. Am. Earth Sci., 72, 95, 10.1016/j.jsames.2016.07.016
Dall’Agnol, R., Scaillet, B., Pichavant, M., 1999. An Experimental Study of a Lower Proterozoic A-type Granite from the Eastern Amazonian Craton, Brazil. J. Petrol. 40, 1673-1698.
Dall’Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A.V., Macambira, M.J.B., de Oliveira, D.C., 2005. Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil. Lithos 80, 101–129. doi.org/10.1016/j.lithos.2004.03.058.
Dall'Agnol, 2007, Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites, Lithos, 93, 215, 10.1016/j.lithos.2006.03.065
Dhuime, 2011, When Continents Formed, Science, 331, 154, 10.1126/science.1201245
DiPietro, 2001, U-Pb zircon ages from the Indian plate in northwest Pakistan and their significance to Himalayan and pre-Himalayan geologic history, Tectonics, 20, 510, 10.1029/2000TC001193
Douce, 1997, Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids, Geology, 25, 743, 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Dymek, 1983, Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland, Am. Mineral., 68, 880
Eby, 1990, The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 26, 115, 10.1016/0024-4937(90)90043-Z
Eby, 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications, Geology, 20, 641, 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Eugster, 1962, Stability Relations of the Ferruginous Biotite, Annite. J. Petrol., 3, 82, 10.1093/petrology/3.1.82
Ferry, 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. to Mineral. Petrol., 154, 429, 10.1007/s00410-007-0201-0
Foster, 1960, Interpretation of the composition of trioctahedral micas, Geol. Surv. Prof., Pap, 354-B
Frost, 2001, A Geochemical Classification for Granitic Rocks, J. Petrol., 42, 2033, 10.1093/petrology/42.11.2033
Frost, 2008, A Geochemical Classification for Feldspathic Igneous Rocks, J. Petrol., 49, 1955, 10.1093/petrology/egn054
Frost, 2011, On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin, J. Petrol., 52, 39, 10.1093/petrology/egq070
Gansser, 1964
Gehrels, 2006, Geologic and U-Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya, J. Asian Earth Sci., 28, 385, 10.1016/j.jseaes.2005.09.012
Glazner, A.F., Coleman, D.S., Mills, R.D., 2015. The Volcanic-Plutonic Connection, in: Breitkreuz, C., Rocchi, S. (Eds.), Physical Geology of Shallow Magmatic Systems. Springer International Publishing, Cham, 61–82. doi.org/10.1007/11157_ 2015_11.
Grebennikov, 2014, A-type granites and related rocks: Petrogenesis and classification, Russ. Geol. Geophys., 55, 1353, 10.1016/j.rgg.2014.10.011
Griffin, 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites, Geochim. Cosmochim. Acta, 64, 133, 10.1016/S0016-7037(99)00343-9
Griffin, 2007, Reply to “Comment on short-communication ;Comment: Hf isotope heterogeneity in zircon 91500’ by W.L. Griffin, N.J. Pearson, E.A. Belousova and A. Saeed (Chem. Geol. 233 (2006) 358–363)” by F, Corfu. Chem. Geol., 244, 354, 10.1016/j.chemgeo.2007.06.023
Hashimoto, 1973
Holland, 2006, The oxygenation of the atmosphere and oceans, Philosophical Transactions of the Royal Society, B: Biol. sci., 361, 903, 10.1098/rstb.2006.1838
Imayama, 2019, 1.74 Ga crustal melting after rifting at the northern Indian margin: investigation of mylonitic orthogneisses in the Kathmandu area, central Nepal, Int. Geol. Rev., 61, 1207, 10.1080/00206814.2018.1504329
Irvine, 1971, A Guide to the Chemical Classification of the Common Volcanic Rocks, Can. J. Earth Sci., 8, 523, 10.1139/e71-055
Ishihara, 1977, The Magnetite-series and Ilmenite-series Granitic Rocks, Min. Geol., 27, 293
Islam, 2011, Petrography, geochemistry and regional significance of crystalline klippen in the Garhwal Lesser Himalaya, India. J. Earth Syst. Sci., 120, 489, 10.1007/s12040-011-0086-1
Ivanov, 2019, Shoshonitic magmatism in the Paleoproterozoic of the south-western Siberian Craton: An analogue of the modern post-collision setting, Lithos, 328–329, 88, 10.1016/j.lithos.2019.01.015
Jackson, 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol., 211, 47, 10.1016/j.chemgeo.2004.06.017
Jain, 2016, Tectonics and Evolution of the Himalaya, Proc. Indian National Sci. Acad., 82, 10.16943/ptinsa/2016/48469
Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks, Minerals and Rocks. Springer Berlin Heidelberg, Berlin, Heidelberg. doi.org/10.1007/978-3-642-61049-3.
Kaur, 2016, Unravelling the record of Archean crustal evolution of the Bundelkhand Craton, northern India using U-Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids, Precambrian Res., 281, 384, 10.1016/j.precamres.2016.06.005
Kilpatrick, 1992, C-type magmas: igneous charnockites and their extrusive equivalents. Earth Environ, Sci. Trans. R. Soc. Edinb., 83, 155
Klimm, 2003, Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precambrian Res., 124, 327, 10.1016/S0301-9268(03)00092-5
Kohn, 2010, The lower Lesser Himalayan sequence: A Paleoproterozoic arc on the northern margin of the Indian plate, Geol. Soc. Am. Bull., 122, 323, 10.1130/B26587.1
Kumar, 2010, Mafic to hybrid microgranular enclaves in the Ladakh batholith, northwest Himalaya: Implications on calc-alkaline magma chamber processes, J. Geol. Soc. India, 76, 5, 10.1007/s12594-010-0080-2
Kumar, 2020, Schedule of mafic to hybrid magma injections into crystallizing felsic magma chambers and resultant geometry of enclaves in granites: New field and petrographic observations from Ladakh Batholith, Trans-Himalaya, India. Front. Earth Sci., 8
Kumar, 2004, Field Evidence of Magma Mixing from Microgranular Enclaves Hosted in Paleoproterozoic Malanjkhand Granitoids, Central India. Gondwana Res., 7, 539, 10.1016/S1342-937X(05)70804-2
Kumar, 2005, Evaluation of granitoid-series of and magmatic oxidation of Neoproterozoic south Khasi granitoids and their microgranular enclaves, Meghalaya: Constrains from magnetic susceptibility and biotite composition, J. Appl. Geochem., 7, 175
Kumar, 2017, Geol. Soc. Spec. Publ., 457, 253, 10.1144/SP457.10
Kumar, 2020, Proterozoic felsic and mafic magmatism in India: Implications for crustal evolution through crust-mantle interactions, Episodes, 43, 203, 10.18814/epiiugs/2020/020013
Kumar, 2010, Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya: Evidence of Bimodal Granitogeny and Tectonic Affinity, J. Geol. Soc. India, 75, 715, 10.1007/s12594-010-0058-0
Kumar, 2021, Tectono-magmatic evolution of granitoids in the Himalaya and Trans-Himalaya, Him. Geol., 42, 213
Kumar, 2006, Mineralogy and geochemistry of microgranular enclaves in Paleoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration, Contrib. to Mineral. Petrol., 152, 591, 10.1007/s00410-006-0122-3
Larson, 2017, Preservation of a Paleoproterozoic rifted margin in the Himalaya: Insight from the Ulleri-Phaplu-Melung orthogneiss, Geosci. Front., 10, 873, 10.1016/j.gsf.2017.05.010
Laurent, 2014, The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga, Lithos, 205, 208, 10.1016/j.lithos.2014.06.012
Le Fort, P., Raı̈, S.M., 1999. Pre-Tertiary felsic magmatism of the Nepal Himalaya: recycling of continental crust. J. Asian Earth Sci. 17, 607–628. doi.org/10.1016/S1367-9120(99)00015-2.
Le Maitre, 2002
Lepage, 2003, ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry, Comput. Geosci., 29, 673, 10.1016/S0098-3004(03)00042-6
Loiselle, M.C., Wones, D.R., 1979. Characteristics and origin of anorogenic granites. Presented at the Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, p. 468.
Ludwig, K.R., 2012. Berkeley Geochronology Center Special Publication No. 5 75.
Mandal, 2016, Zircon U-Pb ages and Hf isotopes of the Askot klippe, Kumaun, northwest India: Implications for Paleoproterozoic tectonics, basin evolution and associated metallogeny of the northern Indian cratonic margin: Askot klippe U-Pb-Hf isotope record, Tectonics, 35, 965, 10.1002/2015TC004064
McDonough, 1995, The composition of the Earth, Chem. Geol., 120, 223, 10.1016/0009-2541(94)00140-4
Miller, 2000, Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism, Precambrian Res., 103, 191, 10.1016/S0301-9268(00)00091-7
Mishra, 2019, Geochemistry and geodynamic setting of Paleoproterozoic granites of Lesser Garhwal Himalaya, India. J. Geosci. Eng. Environ. Technol., 4, 28, 10.25299/jgeet.2019.4.2-2.2138
Moyen, 2021, Crustal melting vs. fractionation of basaltic magmas: part 1, the bipolar disorder of granite petrogenetic models, Lithos., 10.1016/j.lithos.2021.106291
Mukherjee, 2019, U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications, Gondwana Res., 75, 282, 10.1016/j.gr.2019.06.001
Nebel, 2007, Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages, Chem. Geol., 241, 23, 10.1016/j.chemgeo.2007.02.008
O’Neill, 1987, Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4), Am. Mineral., 72, 67
O’Neill, 1988, Systems Fe-O and Cu-O; thermodynamic data for the equilibria Fe- “FeO”, Fe-Fe3O4, “FeO”-Fe3O4, Fe3O4-Fe2O3, Cu-Cu2O, and Cu2O-CuO from emf measurements, Am. Mineral., 73, 470
O’Neill, 1993, Contrib. to Mineral. Petrol., 114, 296, 10.1007/BF01046533
Pandey, 2005
Pandey, 2022, Geochemical evidence for a widespread Paleoproterozoic continental arc-back-arc magmatism in the Lesser Himalaya during the Columbia supercontinent assembly, Precambrian Res, 10.1016/j.precamres.2022.106658
Pandey, 2006, Geochemistry of metavolcanics of Berinag region, Kumaun Lesser Himalaya: A clue to Precambrian mafic magmatism in northwestern Himalaya, Ind. J. Geochem., 21, 185
Panwar, K. S., Kumar, S. 2022. Granite series assessment, nature and crystallization condition of Paleoproterozoic granite gneisses from Askot and Chiplakot klippe, Kumaun Lesser Himalaya, India. J. Earth Syst. https://doi.org/10.1007/s12040-022-01910-4.
Pathak, 2019, Petrology, geochemistry and zircon U-Pb–Lu–Hf isotopes of Paleoproterozoic granite gneiss from Bomdila in the western Arunachal Himalaya, NE India, Geol. Soc. Spec. Publ., 481, 2017, 10.1144/SP481-2017-169
Pearce, 1984, Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks, J. Petrol., 25, 956, 10.1093/petrology/25.4.956
Phukon, 2018, U-Pb geochronology and geochemistry from the Kumaun Himalaya, NW India, reveal Paleoproterozoic arc magmatism related to formation of the Columbia supercontinent, Geol. Soc. Am. Bull., 130, 1164, 10.1130/B31866.1
Pitcher, 1987, Granites and yet more granites forty years on, Geol. Rundsch., 76, 51, 10.1007/BF01820573
Pitcher, 1997, The Nature and Origin of Granite, Springer Science and Business Media, Dordrecht.
Pupin, 1980, Zircon and granite petrology, Contrib. to Mineral. Petrol., 73, 207, 10.1007/BF00381441
Rajesh, 2000, Characterization and origin of a compositionally zoned aluminous A-type granite from South India, Geol. Mag., 137, 291, 10.1017/S001675680000399X
Rameshwar Rao, 2009, Petrogenesis of the granitoid rocks from Askot crystallines, Kumaun Himalaya. J. Geol. Soc. India, 74, 363, 10.1007/s12594-009-0133-6
Rameshwar Rao, 2011, Arc magmatism in eastern Kumaun Himalaya, India: A study based on geochemistry of granitoid rocks: Arc magmatism, Kumaun Himalaya, India. Isl. Arc., 20, 500, 10.1111/j.1440-1738.2011.00781.x
Roverato, 2019, The 2.0–1.88 Ga Paleoproterozoic evolution of the southern Amazonian Craton (Brazil): An interpretation inferred by lithofaciological, geochemical and geochronological data, Gondwana Res., 70, 1, 10.1016/j.gr.2018.12.005
Rubatto, 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism, Chem. Geol., 184, 123, 10.1016/S0009-2541(01)00355-2
Saini, 2014, Preparation and Characterisation of Two Geochemical Reference Materials: DG-H (Granite) and AM-H (Amphibolite) from the Himalayan Orogenic Belt, Geostand. Geoanaly. Res., 38, 111, 10.1111/j.1751-908X.2012.00217.x
Sen, 2018, Age and geochemistry of the Paleoproterozoic Bhatwari Gneiss of Garhwal Lesser Himalaya, NW India: implications for the pre-Himalayan magmatic history of the Lesser Himalayan basement rocks, Geol. Soc. Spec. Publ., SP481.6
Sen, 2013, Is the North Indian continental margin a Palaeo-Proterozoic magmatic arc? Insights from magnetomineralogy and geochemistry of the Wangtu Gneissic Complex, Himachal Lesser Himalaya. Curr. Sci., 104, 8
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 32, 751, 10.1107/S0567739476001551
Sharma, 2001, Geochemical evolution of peraluminous Paleoproterozoic Bandal orthogneiss NW, Himalaya, Himachal Pradesh, India: implications for the ancient crustal growth in the Himalaya, J. Asian Earth Sci., 19, 413, 10.1016/S1367-9120(00)00052-3
Smythe, 2015, Cerium oxidation state in silicate melts: Combined fO2, temperature and compositional effects, Geochim. Cosmochim. Acta, 170, 173, 10.1016/j.gca.2015.07.016
Smythe, 2016, Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium, Earth Planet. Sci. Lett., 453, 260, 10.1016/j.epsl.2016.08.013
Söderlund, 2004, The 176Lu decay constant determined by Lu–Hf and U-Pb isotope systematics of Precambrian mafic intrusions, Earth Planet. Sci. Lett., 219, 311, 10.1016/S0012-821X(04)00012-3
Streckeisen, 1979, A chemical approximation to the modal QAPF classification of the igneous rocks, Neues Jahrb. fur Mineral. Abh., 136, 169
Stussi, 1996, Nature of Biotites from Alkaline, Calc-alkaline and Peraluminous Magmas by Abdel-Fattah M. Abdel-Rahman: A Comment, J. Petrol., 37, 1025, 10.1093/petrology/37.5.1025
Trail, 2011, The oxidation state of Hadean magmas and implications for early Earth’s atmosphere, Nature, 480, 79, 10.1038/nature10655
Trail, 2012, Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas, Geochim. Cosmochim. Acta, 97, 70, 10.1016/j.gca.2012.08.032
Trivedi, 1984, Rb-Sr ages of granitic rocks within the Lesser Himalayan nappes, Kumaun, India. J. Geol. Soc. India, 25, 641
Tuttle, O.F., Bowen, N.L., 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 74.
Uchida, 2007, Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits, Resour. Geol., 57, 47, 10.1111/j.1751-3928.2006.00004.x
Valdiya, 1976, Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains, Tectonophysics, 32, 353, 10.1016/0040-1951(76)90069-X
Valdiya, 1980
Valdiya, 1988, Tectonics and evolution of the central sector of the Himalaya, Proc. Math. Phys. Eng. Sci., 326, 151
Whalen, 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. to Mineral. Petrol., 95, 407, 10.1007/BF00402202
White, A.J.R., 1979. Sources of granite magmas, in: Abstract Programs. Geol. Soc. Amer. Abstr. With Prog. 11, 539.
Whitney, 2010, Abbreviations for names of rock-forming minerals, Am. Mineral., 95, 185, 10.2138/am.2010.3371
Wiebe, 1997, Enclaves in the Cadillac Mountain Granite (Coastal Maine): Samples of Hybrid Magma from the Base of the Chamber, J. Petrol., 38, 393, 10.1093/petroj/38.3.393
Wones, 1963, Physical properties of synthetic biotites on the join phlogopite-annite, Am. Mineral., 48, 1300
Wones, 1972, Stability of biotite: a reply, Am. Min., 57, 316
Wones, 1965, Stability of biotite: experiment, theory, and application, Am. Mineral., 50, 1228
Wu, 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology, Chem. Geol., 234, 105, 10.1016/j.chemgeo.2006.05.003
Yin, 2006, Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth Sci. Rev., 76, 1, 10.1016/j.earscirev.2005.05.004