Geochemistry and the understanding of ground-water systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aeschbach-Hertig W, Schlosser P, Stute M, Simpson HJ, Ludin A, Clark JF (1998) A 3H/ 3He study of ground water flow in a fractured bedrock aquifer. Ground Water 36:661?670
Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Paleotemperature reconstruction from noble gases in ground water taking into account equilibrium with entrapped air. Nature 405:1040?1044
Aeschbach-Hertig W, Stute M, Clack JF, Reuter RF, Schlosser P (2002) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia Aquifer (Maryland, USA). Geochim Cosmochim Acta 66:797?817
Anderholm SK (1988) Ground-water geochemistry of the Albuquerque-Belen Basin, Central New Mexico. US Geol Surv Water Resour Invest Rep 86-4094, 110 pp
Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J Hydrol 41:233?252
Andrews JN, Giles IS, Kay LF, Lee DJ, Osmond JK, Cowart JB, Fritz P, Barker JF, Gale J (1982) Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim Cosmochim Acta 46:1533?1543
Andrews JN, Balderer W, Bath AH, Clausen HB, Evans GV, Florkowski T, Goldbrunner JE, Ivanovich M, Loosli H, Zojer H (1984) Environmental isotope studies in two aquifer systems: a comparison of groundwater dating methods. In: Proceedings of Isotope Hydrology Conference 1983. International Atomic Energy Agency, Vienna, IAEA-SM-270/93, pp 535?576
Andrews JN, Goldbrunner JE, Darling WG, Hooker PJ, Wilson GB, Youngman MJ, Eichinger L, Rauert W, Stichler W (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse basin of Upper Austria. Earth Planet Sci Lett 73:317?332
Andrews JN, Hussain N, Batchelor AS, Kwakwa KK (1986) 222Rn solution by the circulating fluids in a hot dry rock geothermal reservoir. Appl Geochem 1:647?657
Andrews JN, Fontes JCh, Fritz P, Nordstrom K (1988) Hydrogeochemical assessment of crystalline rock for radioactive waste disposal: the Stripa experience. Swedish Nuclear Fuel and Waste Management Co, SKB Tech Rep 88-05, 26 pp
Andrews JN, Ford DJ, Hussain N, Trivedi D, Yougman MJ (1989) Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim Cosmochim Acta 53:1791?1802
Andrews JN (1991) Noble gases and radioelements in groundwaters. In: Downing RA, Wilkinson WB (eds) Applied groundwater hydrology. Clarendon Press, Oxford, pp 243?265
Andrews JN (1992) Mechanism for noble gas dissolution by groundwaters. In: Proceedings of Consultants Meeting on Isotopes of Noble Gases as Tracers in Environmental Studies. International Atomic Energy Agency, Vienna, pp 87?110
Andrews JN, Fontes JCh (1993) Comment on ?Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia? by Torgersen et al. Water Resour Res 29:1871?1874
Andrews JN, Edmunds WM, Smedley PL, Fontes J-Ch, Fifield LK, Allan GL (1994) Chlorine-36 in groundwater as a paleoclimatic indicator: the East Midlands Triassic sandstone aquifer (UK). Earth Planet Sci Lett 122:159?171
Andrews RW, Pearson FJ Jr (1984) Transport of 14C and uranium in the Carrizo aquifer of south Texas: a natural analog of radionuclide migration. Materials Research Society Symposium Proceedings, vol 26. Elsevier, pp 1085?1092
Appelo CAJ, Willemsen A (1987) Geochemical calculations and observations on salt water intrusions, 1: A combined geochemical/mixing cell model. J Hydrol 94:313?330
Appelo CAJ, Willemsen A, Beekman HE, Griffionen J (1990) Geochemical calculations and observations on salt water intrusions, 2: Validation of a geochemical model with column experiments. J Hydrol 120:225?250
Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema Press, Rotterdam, The Netherlands, 536 pp
Appelo CAJ (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour Res 30:2793?2805
Aravena R, Wassenaar LI, Plummer LN (1995) Estimating C-14 groundwater ages in a methanogenic aquifer. Water Resour Res 31:2307?2317
Baas-Becking LGM, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation?reduction potentials. J Geol 68:243?284
Back W (1960) Origin of hydrochemical facies of ground water in the Atlantic Coastal Plain. In: Proceedings of 21st International Geological Congress, Copenhagen 1960, Pt 1, pp 87?95
Back W (1966) Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain. US Geol Surv Prof Pap 498-A
Back W, Hanshaw BB (1970) Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. J Hydrol 10:330?368
Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415?1429
Back W, Herman JS (1997) American hydrogeology at the millennium: an annotated chronology of 100 most influential papers. Hydrogeol J 5:37?50
Baedecker MJ, Back W (1979) Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J Hydrol 43:393?414
Balderer W, Synal HA (1996) Application of the chlorine-36 method for the characterization of the groundwater circulation in tectonically active areas: examples from northwestern Anatolia/Turkey. Terra Nova 8:324?333
Bath AH, Edmunds WM, Andrews JN (1979) Paleoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: Proceedings of Isotope Hydrology Conference 1978. International Atomic Energy Agency, Vienna, pp 545?568
Bath AH, Pearson FJ, Gautschi A, Waber HN (2001) Water?rock interactions in mudrocks and similar low permeability material. In: Cidu R (ed) Proceedings of 10th International Symposium on Water?Rock Interaction in Villasimius, Italy. Balkema Press, The Netherlands, pp 3?12
Bayari S (2002) TRACER: an EXCEL workbook to calculate mean residence time in groundwater by use of tracers CFC-11, CFC-12 and tritium. Comput Geosci 28:621?630
Bayer R, Schlosser P, Bonisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He in-growth method. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Jahrgang 1989, 5. Abhandlung, Springer, Berlin Heidelberg New York, 42 pp
Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986) Chlorine-36 dating of very old groundwater, 1. The Great Artesian Basin, Australia. Water Resour Res 22:1991?2001
Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359?365
Bexfield LM, Anderholm SK (2002) Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system. US Geol Surv Water Resour Invest Rep 01-4244, 101 pp
Bodine MW Jr, Jones BF (1986) The salt norm: a quantitative chemical?mineralogical characterization of natural waters. US Geol Surv Water Resour Invest Rep 86-4086, 130 pp
Bodine MW Jr, Jones BF (1990) Normative analysis of groundwaters from the Rustler Formation associated with the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico. In: Spencer RJ, Chou I-M (eds) Fluid?mineral interactions: a tribute to H.P. Eugster. Geochem Soc Spec Publ No. 2, pp 213?269
Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31(9):2319?2339
Bowser CJ, Jones BF (2002) Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. Am J Sci 302:582?662
Brantley SL, Chen Y (1995) Chemical weathering rates of pyroxenes and amphiboles. In: White AF, Brantley SL (eds) Mineral Soc Am Rev Mineral 31:119?172
Brinkmann R, Münnich KO, Vogel JC (1959) 14C-altersbestimmung von grundwasser [C14 age determination of groundwater]. Naturwissenschaften 46:10?12
Brinkmann R, Münnich KO, Vogel JC (1960) Anwendung der C 14-methode auf bodenbildung und grundwasserkreislauf [Application of the C 14 method to soil structure and the ground water cycle]. Geol Rundschau 49:244?253
Brown JG, Bassett RL, Glynn PD (1998) Analysis and simulation of reactive transport of metal contaminants in ground water in Pinal Creek Basin, Arizona. J Hydrol 209:225?250
Brown JG, Glynn PD (2003) Kinetic dissolution of carbonates and Mn oxides in acidic water: measurement of in situ field rates and reactive transport modeling. Appl Geochem 18:1225?1239
Buddemeier RW, Okamoto HS, Hurd DO, Hufen RR (1972) Effects of solution and exchange on the radiocarbon dating of sediments and natural waters. In: Proceedings of 8th International Conference on Radiocarbon Dating, R Soc N Z, Wellington, Vol 1, pp 297?310
Buffle J, van Leeuwen HP (eds) (1993) Environmental particles, vol 2, Lewis Publishers, Boca Raton, 426 pp
Burgman JO, Calles B, Westman F (1987) Conclusions from a ten-year study of oxygen-18 in precipitation and runoff in Sweden. In: Isotope techniques in water resources development. International Atomic Energy Agency, Vienna, pp 579?590
Burns DA, Plummer LN, McDonnell JJ, Busenberg E, Casile G, Kendall C, Hooper RP, Freer JE, Peters NE, Beven K, Schlosser P (2003) Geochemical evolution of riparian ground water in a forested Piedmont catchment. Ground Water 41:913?925
Burr CS, Thomas JM, Reines D, Jeffrey D, Courtney D, Jull AJT, Lange T (2001) Sample preparation of dissolved organic carbon in groundwater for AMS 14C analysis. Radiocarbon 43:183?190
Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WR (2002) Influence of fracture anisotropy on ground-water ages and chemistry, Valley and Ridge Province, Pennsylvania. Ground Water 40:242?257
Busby JF, Lee RW, Hanshaw BB (1983) Major geochemical processes related to the hydrology of the Madison aquifer system and associated rocks in parts of Montana, South Dakota, and Wyoming. US Geol Surv Water Resour Invest Rep 83-4093, 180 pp
Busby JF, Plummer LN, Lee RW, Hanshaw BB (1991) Geochemical evolution of water in the Madison aquifer in parts of Montana, South Dakota, and Wyoming. US Geol Surv Prof Pap 1273-F, 89 pp
Busenberg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure. Geochim Cosmochim Acta 53:1189?1208
Busenberg E, Plummer LN (2000) Dating young ground water with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011?3030
Castro MC, Jambon A, De Marsily G, Schlosser P (1998a) Noble gases as natural tracers of water circulation in the Paris Basin, 1. Measurements and discussion of their origin and mechanisms of vertical transport in the basin. Water Resour Res 34:2443?2466
Castro MC, Goblet P, Ledoux E, Violette S, De Marsily G (1998b) Noble gases as natural tracers of water circulation in the Paris Basin. 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour Res 34:2467?2483
Castro MC, Stute M, Schlosser P (2000) Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137?1167
Cederstrom DJ (1946) Genesis of ground waters in the Coastal Plain of Virginia. Econ Geol 41:218?245
Champ DR, Gulens J, Jackson RE (1979) Oxidation?reduction sequences in ground water systems. Can J Earth Sci 16:12?23
Chapelle F (1993) Ground-water microbiology and geochemistry. Wiley, New York, 424 pp
Chapman NA, McKinley IG, Shea ME, Smellie JAT (1993) The Poços de Caldas project: natural analogues of processes in a radioactive waste repository. Elsevier, Amsterdam
Charlton SR, Macklin CL, Parkhurst DL (1997) PHREEQCI?a graphical user interface for the geochemical computer program PHREEQC. US Geol Surv Water Resour Invest Rep 97?4222, 9 pp
Charlton SR, Parkhurst DL (2002) PHREEQCl?a graphical user interface to the geochemical model PHREEQC. US Geol Surv Fact Sheet FS-031-02
Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Parts 1?3. Geochim Cosmochim Acta 8:22?48, 137?170, 198?212
Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publisher, Boca Raton, 328 pp
Collon P, Kutschera W, Loosli HH, Lehmann BE, Purtschert R, Love A, Sampson L, Anthony D, Cole D, Davids B, Morrissey DJ, Sherrill BM, Steiner M, Pardo RC, Paul M (2000) 81Kr in the Great Artesian basin, Australia: a new method for dating very old groundwater. Earth Planet Sci Lett 182:103?113
Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J Hydrol 191:245?265
Cook PG, Böhlke JK (2000) Determining timescales for groundwater flow and solute transport. In: Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, pp 1?30
Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, 529 pp
Coplen TB, Winograd IJ, Landwehr JM, Riggs AC (1994) 500,000-year stable carbon isotopic record from Devils Hole, Nevada. Science 263:361?365
Davidson MR, Airey PL (1982) The effect of dispersion on the establishment of a paleoclimatic record from groundwater. J Hydrol 58:131?147
Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF, White AF (eds) Mineral-water interface geochemistry. Mineral Soc Am Rev Mineral 23:177?248
Davis SN, Bentley HW (1982) Dating groundwater, a short review. In: Cutrie LA (ed) Nuclear and chemical dating techniques; interpreting the environmental record. Am Chem Soc Symp Ser 176, Washington, DC, pp 187?222
Davis SB, Fabryka-Martin J, Wolfsberg L, Moysey S, Shaver R, Alexander EC Jr, Krothe N (2000) Chlorine-36 in ground water containing low chloride concentrations. Ground Water 38:912?921
Davis SN, Moysey S, Cecil LD, Zreda M (2003) Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol J 11:217?227
Deák J, Stute M, Rudolph J, Sonntag C (1987) Determination of the flow regime of Quaternary and Pliocene layers in the Great Hungarian Plain (Hungary) by D, 18O, 14C and noble gas measurements. In: Isotope techniques in water resources development. International Atomic Energy Agency, Vienna. IAEA-SM-299/39, pp 335?350
Drever JI (1997) The geochemistry of natural waters-surface and groundwater environments, 3rd edn. Prentice Hall, Upper Saddle River, NJ, 436 pp
Dreybrodt W, Buhmann D, Michaelis J, Usdowski E (1992) Geochemically controlled calcite precipitation by CO2 outgassing: field measurements of precipitation rates in comparison to theoretical predictions. Chem Geol 97:285?294
Dutton AR (1995) Ground water isotopic evidence for paleorecharge in US High Plains aquifers. Quat Res 43:221?231
Eberl DD, Srodon J, Kralik M, Taylor BE, Peterman ZE (1990) Ostwald ripening of clays and metamorphic minerals. Science 248:474?477
Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46(11):2069?2081
Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737?752
Engesgaard P, Kipp KL (1992) A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: a case of nitrate removal by oxidation of pyrite. Water Resour Res 28:2829?2843
Engesgaard P, Molson J (1998) Direct simulation of ground water age in the Rabis Creek aquifer, Denmark. Ground Water 36:77?582
Evans WC, van Soest MC, Mariner RH, Hurwitz S, Ingebritsen SE, Wicks CW Jr, Schmidt ME (2004) Magmatic intrusion west of Three Sisters, central Oregon, USA: the perspective from spring chemistry. Geology 32:69?72
Fabryka-Martin J, Davis SN, Elmore D (1987) Applications of 129I and 36Cl in hydrology. Nuclear Instrum Methods Phys Res B29:361?371
Florkowski T, Rozanski K (1986) Radioactive noble gases in the terrestrial environment. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry: the terrestrial environment B, vol 2. Elsevier, New York, pp 481?506
Fontes J-Ch (1983) Dating of groundwater. In: Guidebook on nuclear techniques in hydrology, 1983 edn., International Atomic Energy Agency, Vienna, Tech Rep Ser 91:285?317
Fontes J-Ch (1994) Isotope paleohydrology and the prediction of long-term repository behaviour. Terra Nova 6:20?34
Fontes J-Ch (1992) Chemical and isotopic constraints on 14C dating of groundwater. In: Taylor RE, Long A, Kra R (eds) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 242?261
Fontes J-Ch, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399?413
Foster MD (1950) The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains. Geochim Cosmochim Acta 1:33?48
Fröhlich K (1990) On dating of old groundwater. Isotopenpraxis 26:557?560
Fryar AE, Mullican WF, Macko SA (2001) Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA. Hydrogeol J 9:522?542
Fu Wei Huai, Ledoux E, de Marsily G (1990) Regional modeling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin. J Hydrol 120:341?358
Gamsjäger H, Königsberger E, Preis W (2000) Lippmann diagrams: theory and application to carbonate systems. Aquat Geochem 6:119?132
Garmonov IV (1958) Fundemental principles of hydrochemical zoning of underground waters in the European part of the Soviet Union. In: Proceedings of Symposium on Ground Water 1955, Central Board of Geophysics. Temple Press, Calcutta. Publ No. 4, pp 293?302
Garnier J-M (1985) Retardation of dissolved radiocarbon through a carbonated matrix. Geochim Cosmochim Acta 49:683?693
Garrels RM, Thompson ME (1962) A chemical model for sea water at 25°C and one atmosphere total pressure. Am J Sci 260:57?66
Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper and Row, New York, 450 pp
Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Equilibrium concepts in natural water systems. Am Chem Soc Adv Chem Ser 67:222?242
Gibbs JW (1876, 1878) On the equilibrium of heterogeneous substances. Connecticut Academy Transactions III:108?248, 343?524. In: The scientific papers of J. Willard Gibbs. Dover Publ, New York, 1961
Glynn PD, Reardon EJ (1990) Solid-solution aqueous-solution equilibria: thermodynamic theory and representation. Am J Sci 290:164?201
Glynn PD, Reardon EJ, Plummer LN, Busenberg E (1990) Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems. Geochim Cosmochim Acta 54:267?282
Glynn PD (1991) MBSSAS: a code for the computation of Margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems. Comput Geosci 17:907?966
Glynn PD, Reardon EJ (1992) Reply to Comment by Königsberger and Gamsjäger on ?Solid-solution aqueous-solution equilibria: thermodynamic theory and representation?. Am J Sci 292:215?225
Glynn PD, Plummer LN, Busenberg E, Reardon EJ (1992) Reply to a Comment by Dr. Stoessell on ?Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems?. Geochim Cosmochim Acta 56:2559?2572
Glynn PD, Brown JG (1996) Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Steefel CI, Lichtner P, Oelkers E (eds) Reactive transport in porous media: general principles and application to geochemical processes. Mineral Soc Am Rev Mineral 34:377?438
Glynn PD, Voss CI, Provost AM (1999) Deep penetration of oxygenated meltwaters from warm based sheets into the Fennoscandian Shield. In: Use of hydrological information in testing groundwater flow models: Technical Summary and Proceedings of a Workshop, Nuclear Energy Agency, ISBN 92-64-16153-8, pp 201?241
Glynn PD, Voss CI (1999) Geochemical characterization of Simpevarp ground waters near the Äspö Hard Rock Laboratory. Swedish Nuclear Power Inspectorate (SKI), SKI Rep 96:29, 210 pp
Glynn PD (2000) Solid-solution solubilities and thermodynamics: sulfates, carbonates and halides. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals?crystallography, geochemistry and environmental significance. Rev Mineral Geochem 40:481?511
Glynn PD (2003) Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: implications for reactive transport modeling and performance assessments of nuclear waste disposal sites. Comput Geosci 29:331?349
Gonfiantini R, Zuppi GM (2003) Carbon isotope exchange rate of DIC in karst groundwater. Chem Geol 197:319?336
Gosselin DC, Harvey FE, Frost CD (2001) Geochemical evolution of ground water in the Great Plains (Dakota) aquifer of Nebraska: Implications for the management of a regional aquifer system. Ground Water 39:98?108
Grabczak J, Zuber A, Maloszewski P, Rozanski K, Weiss W, Sliwka I (1982) New mathematical models for the interpretation of environmental tracers in groundwaters and the combined use of tritium, C-14, Kr-85, He-3, and Freon-11 for groundwater studies. Beitr Geol Schweiz, Hydrol 28:395?406
Hanshaw BB, Back W, Rubin M (1965a) Radiocarbon determinations for estimating groundwater flow velocities in Central Florida. Science 148:494?495
Hanshaw BB, Back W, Rubin M (1965b) Carbonate equilibria and radiocarbon distribution related to groundwater flow in the Floridan Limestone aquifer, USA. In: Proceedings of International Association on Science of Hydrology, Dubrovnik, 1965, pp 601?614
Hanshaw BB, Back W (1974) Determination of regional hydraulic conductivity through use of 14C dating of groundwater. Mémoires de l?Association Internationale des Hydrogéologues, Congres de Montpellier, X-1, pp 195?196
Harvey RW, Harms H (2002) Use of microorganisms as tracers in groundwater. In: Britton G (ed) Encylopedia of environmental microbiology. Wiley, New York, pp 3194?3202
Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim Cosmochim Acta 48:723?752
Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations. Geochim Cosmochim Acta 32:853?877
Helgeson HC, Brown TH, Nigrini A, Jones TA (1970) Calculation of mass transfer in geochemical processes involving aqueous solutions. Geochim Cosmochim Acta 34:569?592
Helgeson HC, Garrels RM, Mackenzie FT (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. II. Applications. Geochim Cosmochim Acta 33:455?481
Hem JD (1959, 1992) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Supply Paper 1473, 269 pp, Revised and last reprinted in 1992
Hendry MJ, Schwartz FW (1990) Chemical evolution of ground water in the Milk River aquifer. Can J Ground Water 28(2):253?261
Hendry MJ, Schwartz FW, Robertson CR (1991) Hydrogeology and hydrogeochemistry of the Milk River Aquifer system?a review. J Appl Geochem 6:369?380
Herczeg AL, Simpson HJ, Mazor E (1993) Transport of soluble salts within a large semi-arid basin: River Murray, Australia. J Hydrol 144:59?84
Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225?245
Herman J, Lorah M (1988) Calcite precipitation rates in the field: measurement and prediction for a travertine-depositing stream. Geochim Cosmochim Acta 52:2347?2355
Hitchon B, Perkins EH, Gunter WD (1999) Introduction to ground water geochemistry. Geoscience Publishing, Sherwood Park, Alberta, 310 pp
Hochella MF, White AF (1990) Mineral-water interface geochemistry. In: Hochella MF, White AF (eds) Mineral Soc Am Rev Mineral 23:603 pp
Hostettler JD (1984) Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am J Sci 284:734?759
Hunkeler D, Aravena R, Butler B (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33:2733?2738
Ingerson E, Pearson FJ Jr (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Recent researches in the fields of atmosphere, hydrosphere, and nuclear geochemistry, Sugawara Festival Volume. Maruzen Co., Tokyo, pp 263?283
International Atomic Energy Agency (2005) IAEA Guidebook on the use of chlorofluorocarbons in hydrology (in press)
Ittner T, Gustafsson E, Nordqvist R (1991) Radionuclide content in surface and groundwater transformed into breakthrough curves: a Chernobyl fallout study in a forested area in northern Sweden. Swedish Nuclear Fuel and Waste Management Co. (SKB), SKB Tech Rep 91-28, 16 pp
Ivanovich M, Frölich K, Hendry MJ, Andrews JN, Davis SN, Drimmie RJ, Fabryka-Martin J, Florkowski T, Fritz P, Lehmann BE, Loosli HH, Nolte E (1992) Evaluation of isotopic methods for the dating of very old groundwaters: a case study of the Milk River aquifer. In: Isotope techniques in water resources development 1991, Proceedings of symposium, Vienna, March 11?15, 1991. International Atomic Energy Agency, Vienna, pp 229?244
Johnson TM, DePaolo DJ (1996) Reaction-transport models for radiocarbon in groundwater: the effects of longitudinal dispersion and the use of Sr isotope ratios to correct for water?rock interaction. Water Resour Res 32(7):2203?2212
Jones BF, Anderholm SK (1996) Some geochemical considerations of brines associated with bedded salt repositories. In: Bottrel SH (ed) Fourth International Symposium Geochemistry of the Earth?s Surface. International Association of Geochemistry & Cosmochemistry, pp 343?353
Jones BF, Bowser CJ (1978) The mineralogy and related chemistry of lake sediments. In: Lerman A (ed) Lakes: chemistry, geology, physics, chap 7. Springer, Berlin Heidelberg New York, pp 179?235
Jones BF, Hanor JS, Evans WR (1994) Sources of dissolved salts in the central Murray Basin, Australia. Chem Geol 111:135?154
Jones BF, Llamas MR (1989) Normative analysis of groundwaters from the Madrid Basin, Spain. In: Miles DL (ed) Proceedings of 6th International Symposium on Water?Rock Interaction, Malvern, 3?8 August 1989, Balkema, Rotterdam, pp 341?347
Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology, chap 4. Kluwer Academic Publishers, Boston, pp 111?144
Kamensky GN (1958) Hydrochemical zoning in the distribution of underground waters. In: Proceedings of the Symposium on Ground Water 1955. Central Board of Geophysics. Temple Press, Calcutta, Pub. No. 4, pp 281?292
Katz BG, Böhlke JK, Hornsby HD (2001) Timescales for nitrate contamination of spring waters, northern Florida, USA. Chem Geol 179:167?186
Kauffman SJ, Herman JS, Jones BF (1998) Lithological and hydrological influences on groundwater composition in a heterogenous carbonate-clay aquifer system. Geol Soc Am Bull 110(9):1163?1173
Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier Science Publishers, Amsterdam, 839 pp
Kim J, Dong H, Seabaugh J, Newell SW, Eberl DD (2004) Role of microbes in the smectite-to-illite reaction. Science 203:830?832
Kipfer R, Aeschback-Hertig W, Peters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 27:615?700
Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, Chichester, 508 pp
Konikow LF, Glynn PD (2005) Modeling ground-water flow and quality. In: Selinus O (ed) Medical geology. Academic Press (in press)
Korzhinskii DS (1936) Mobility and inertia of components in metasomatism (in Russian). Izvestiya AN USSR Ser Geol 1:35?60
Krumbein WC, Garrels RM (1952) Origin and classification of chemical sediments in terms of pH and oxidation?reduction potentials. J Geol 60:1?30
Landwehr JM, Winograd IJ (2001) Dating the Vostok ice core record by importing the Devils Hole chronology. J Geophys Res 106(D23):31, 853?31, 862
Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, Upper Saddle River, NJ, 600 pp
Leaney FJ, Allison GB (1986) Carbon-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. J Hydrol 88:129?145
Lehmann BE, Oeschger H, Loosli HH, Hurst GS, Allman SL, Chin CH, Kramer SD, Payne MG, Phillips RC, Willis RD, Thonnard N (1985) Counting 81Kr atoms for analysis of groundwater. J Geophys Res 90(B13):11547?11551
Lehmann BE, Davis SN, Fabryka-Martin JT (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour Res 29:2027?2040
Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Groning M (2003) A comparison of groundwater dating with Kr-81, Cl-36 and He-4 in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211:237?250
Lindsey BD, Phillips SW, Donnelly CA, Speiran GK, Plummer LN, Bohlke JK, Focazio MJ, Burton WC, Busenberg E (2003) Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed. US Geol Surv Water Resour Invest Rep 03-4035, 201 pp
Lippmann F (1977) The solubility product of complex minerals, mixed crystals and three-layer clay minerals. Neues Jahrb Min Abh 130:243?263
Lippmann F (1980) Phase diagrams depicting the aqueous solubility of binary mineral systems. Neues Jahrb Min Abh 139:1?25
Liu Z, Svensson U, Dreybrodt W, Daoxian Y, Buhmann D (1995) Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates. Geochim Cosmochim Acta 59:3087?3097
Llamas MR, Martinez A (1981) Application of different computer models to the study of solute transport in a vertical profile of the Madrid aquifer. Sci Total Environ 21:347?352
Loosli HH, Lehmann BE, Smethie WM Jr (2000) Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, pp 379?396
Magaritz M, Wells M, Amiel AJ, Ronen D (1989) Application of a multi-layer sampler based on the dialysis cell technique for the study of trace metals in groundwater. Appl Geochem 4:617?624
Maiss M, Brenninkmeijer CAM (1998) Atmospheric SF6: trends, sources and prospects. Environ Sci Technol 32:3077?3086
Ma?oszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol 57:207?231
Ma?oszewski P, Rauert W, Stichler W, Herrmann A (1983) Application of flow models to an Alpine catchment area using tritium and deuterium data. J Hydrol 66:319?330
Ma?oszewski P, Zuber A (1991) Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resour Res 27:1937?1945
Ma?oszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data, Manual on the mathematical models in isotope hydrogeology, IAEA-TECDOC-910, pp 9?58
Manning AH, Solomon DK (2003) Using noble gases to investigate mountain-front recharge. J Hydrol 275:194?207
Manning AH, Solomon DK, Sheldon AL (2003) Applications of a total dissolved gas pressure probe in ground water studies. Ground Water 41(4):440?448
Marty B, Torgersen T, Meynier V, O?Nions RK, De Marsily G (1993) Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resour Res 29:1025?1035
Mattle N, Kinzelbach W, Beyerle U, Huggenberger P, Loosli HH (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model. J Hydrol 242:183?196
Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters; Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36:1321?1336
Mazor E, Bosch A (1992) Helium as a semi-quantitative tool for groundwater dating in the range of 104?108 years. In: Proceedings of Consultants Meeting on Isotopes of Noble Gases as Tracers in Environmental Studies. International Atomic Energy Agency, Vienna, pp 163?178
McCarthy JF, Degueldre C (1993) Sampling and characterization of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle J, van Leeuwen HP (eds) Environmental particles, vol 2. Lewis Publishers, Chelsea, MI, USA, pp 247?315
McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 22(3):319?341
McMahon PB (2001) Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions. In: Remenda V (ed) Theme issue on confining units. Hydrogeol J 9:34?43 DOI 10.1007/s100400000109
McMahon PB, Bohlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, Southwestern Kansas, USA. Appl Geochem 19:1655?1686
Mehta S, Fryar AE, Banner JL (2000) Controls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA. Appl Geochem 15:849?864
Miller JA (1999) Ground water atlas of the United States, introduction and national summary. US Geol Surv, HA-730 (and volumes within the HA-730 series). http://capp.water.usgs.gov/gwa/index.html
Miller W, Alexander R, Chapman N, McKinley I, Smellie J (1994) Natural analogue studies in the geological disposal of radioactive wastes. Elsevier, Netherlands. Stud Environ Sci 57:412
Mook WG (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. In: Proceedings of Eighth International Conference on Radiocarbon Dating, R Soc N Z, Wellington, New Zealand, Vol 1, pp 342?352
Mook WG (1980) Carbon-14 in hydrogeological studies. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, Vol 1. Elsevier, Amsterdam, pp 49?74
Morgenstern U (2000) Silicon-32, Environmental tracers in subsurface hydrology. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, pp 498?502
Morris JC, Stumm W (1967) Redox equilibria and measurements of potentials in the aquatic environment. In: Stumm W (ed) Equilibrium concepts in natural water systems, chap 13. Am Chem Soc Adv Chem Ser 67, Washington, DC, pp 270?285
Morse BS (2002) Radiocarbon dating of groundwater using paleoclimatic constraints and dissolved organic carbon in the southern Great Basin, Nevada and California. Unpubl. MS thesis, University of Nevada, Reno, NV, 63 pp
Moser H, Rauert W (1983) Determination of groundwater movement by means of environmental isotopes?state of the art. In: IAHS Symposium on Relation of Groundwater Quantity and Quality, XVIII IUGG Assembly, Hamburg, pp 1?30
Mozeto AA, Fritz P, Reardon EJ (1984) Experimental observations of carbon isotope exchange in carbonate-water systems. Geochim Cosmochim Acta 48:495?504
Münnich KO (1957) Messung des 14C-Gehalts von hartem Grundwasser [Measurement of 14C contents in hard ground water]. Naturwissenschaften 44:32?39
Murphy EM, Davis SN, Long A, Donahue D, Jull AJT (1989) 14C in fractions of dissolved organic carbon in groundwater. Nature 337:153?155
Nash H, McCall JGH (1994) Groundwater quality. Chapman & Hall, London, 224 pp
Nativ R, Gutierrez GN(1989) Hydrogeology and hydrochemistry of Cretaceous aquifers, southern High Plains, USA. J Hydrol 108:79?109
Nativ R, Smith DA(1987) Hydrogeology and geochemistry of the Ogallala aquifer, southern High Plains. J Hydrol 91:217?253
Nelms DL, Harlow GE Jr, Plummer LN, Busenberg E (2003) Aquifer susceptibility in Virginia, 1998?2000. US Geol Surv Water Resour Invest Rep 03-4278, http://water.usgs.gov/pubs/wri/wri034278/
Nicolis G, Prigogine I (1989) Exploring complexity: an introduction. WH Freeman, New York, 328 pp
Nolte E, Krauthan P, Heim U, Korschinek G (1990) 36Cl measurements and dating of groundwater samples from the Milk River aquifer. Nucl Instrum Methods Phys Res B52:477?482
Nordstrom DK, Plummer LN, Wigley TML, Wolery TJ, Ball JW, Jenne EA, Bassett RL, Crear DA, Florence TM, Fritz B, Hoffman M, Holdren Jr GR, Lafon GM, Mattigod SV, McDuff RE, Morel F, Reddy MM, Sposito G, Thrailkill J (1979) A comparison of computerized aqueous models. In: Jenne EA (ed) Chemical modeling in aqueous systems. Am Chem Soc Symp Ser 93:857?892
Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water?rock interactions at Stripa. Geochim Cosmochim Acta 53:1727?1740
Nordstrom DK (1994) On the evaluation and application of geochemical models, Appendix II. In: Proceedings of 5th CEC Natural Analogue Working Group and Alligator Rivers Analogue Project: Toledo, Spain, October 5?19, pp 375?385
Nordstrom DK, Munoz JL (1994) Geochemical thermodynamics, 2nd edn. Blackwell Scientific Publications, Boston
Nordstrom DK (2004) Modeling low-temperature geochemical processes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol 5, Drever JI (ed) Surface and ground water, weathering, erosion and soils, chap 5.02, 36 pp
Olmsted FH (1962) Chemical and physical character of ground water in the National Reactor Testing Station, Idaho. US Geol Surv IDO-22043-USGS
Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641?646
Oreskes N (2000) Why believe a computer? Models, measures, and meaning in the natural world. In: Schneiderman J (ed) The earth around us. WH Freeman, New York, pp 70?82
Paces T (1983) Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochim Cosmochim Acta 47:1855?1863
Paces JB, Neymark LA, Marshall BD, Whelan JF, Peterman ZE (2001) Ages and origins of calcite and opal in the Exploratory Studies Facility Tunnel, Yucca Mountain, Nevada. US Geol Surv Water Resour Invest Rep 01-4049
Palissy B (1580) Discours admirable de la nature des eaux et fontaines tant naturelles qu?artificielles, des metaux, des sels & salines, des pierres, des terres, du feu & des emaux [Discourse on the nature of waters and fountains, both natural and artificial, and on metals, salts and brines, rocks, soils, fire and enamels]. M Le Jeune, Paris, 361 pp
Palmer C (1911) The geochemical interpretation of water analyses. US Geol Surv Bull 479:31
Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE?a computer program for geochemical calculations. US Geol Surv Water Resour Invest Rep 80-96
Parkhurst DL, Plummer LN, Thorstenson DC (1982) BALANCE?a computer program for calculating mass transfer for geochemical reactions in ground water. US Geol Surv Water Resour Invest Rep 82-14
Parkhurst DL, Christenson S, Breit GN (1992) Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma: geochemical and geohydrologic investigations. US Geol Surv Open-File Rep 92-642, 113 pp
Parkhurst DL, Plummer LN (1993) Geochemical models. In: Alley WM (ed) Regional ground-water quality, Vol 9, pp 199?225
Parkhurst DL (1995) User?s guide to PHREEQC?a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. US Geol Surv Water Resources Invest Rep 95-4227, 143 pp
Parkhurst DL (1997) Geochemical mole-balance modeling with uncertain data. Water Resour Res 33:1957?1970
Parkhurst DL, Appelo CAJ (1999) User?s guide to PHREEQC?a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259
Parkhurst DL, Stollenwerk KG, Colman JA (2003) Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts. US Geol Surv Water Resour Invest Rep 03-4017, 33 pp
Parkhurst DL, Petkewich MD (2002) Geochemical modeling of an aquifer storage recovery experiment. Charleston, South Carolina. In: Aiken GR, Kuniansky EL (eds) US Geol Surv Artificial Recharge Workshop Proceedings, Sacramento, California: US Geol Surv Open-File Rep 02-89, pp 37?40
Pearson FJ, Arcos D, Bath A, Boisson J-Y, Fernández AMa, Gäbler H-E, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003) Mont Terri Project?Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory. Bern, Switzerland, Federal Office for Water and Geology (FOWG), Geology Series 5, 319 pp
Pearson FJ Jr, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. In: Proceedings of Isotope Hydrology Conference 1970. International Atomic Energy Agency, Vienna. IAEA-SM-129/18, pp 271?286
Pearson FJ Jr, White DE (1967) Carbon-14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. Water Resour Res 3:251?261
Pearson FJ Jr, Balderer W, Loosli HH, Lehmann BE, Matter A, Peters TJ, Schmassmann H, Gautschi A (1991) Applied isotope hydrogeology: a case study in northern Switzerland. Stud Environ Sci 43:439
Pearson FJ Jr, Noronha CJ, Andrews RW (1983) Mathematical modeling of the distribution of natural 14C, 234U, and 238U in a regional ground-water system. In: Stuiver M, Kra R (eds) Proceedings of 11th International Radiocarbon Conference, Seattle, WA. Radiocarbon 25:291?300
Pearson FJ Jr, Truesdell AH (1978) Tritium in the waters of Yellowstone National Park. In: Zartman RE (ed) Short Papers of the Fourth International Conference Geochronology Cosmochronology Isotope Geology 1978, Snowmass-at-Aspen, CO, Washington, DC. US Geol Surv Open-File Rep 78-701, pp 327?329
Pearson FJ Jr (1992) Effects of parameter uncertainty in modeling 14C in groundwater. In: Taylor R, Long A, Kra R (eds) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 262?275
Pebesma EJ, de Kwaadsteniet JW (1997) Mapping groundwater quality in the Netherlands. J Hydrol 200:364?386
Phillips FM, Mattick JL, Duval TA, Elmore D, Kubik PW(1988) Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour Res 24:1877?1891
Phillips FM (1999) Chlorine-36. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 299?348
Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914?923
Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, chap 3, 2nd edn. CRC Press, Boca Raton, FL, pp 75?153
Pitzer KS (1994) Thermodynamics, 3rd edn. McGraw-Hill, New York, 626 pp
Plummer LN, Parkhurst DL, Thorstenson DC (1983) Development of reaction models for ground-water systems. Geochim Cosmochim Acta 47:665?686
Plummer LN (1985) Geochemical modeling: a comparison of forward and inverse methods. In: Hitchon B, Wallick EI (eds) Proceedings of First Canadian/American Conference on Hydrogeology, Banff, Alberta, June 1984. National Water Well Assoc Pub, pp 149?177
Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981?2014
Plummer LN Prestemon EC, Parkhurst DL (1991) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH: US Geol Surv Water Resour Invest Rep 91-4078, 227 pp
Plummer LN (1992) Geochemical modeling?past, present, future. In: Kharaka Y, Maest AS (eds) Proceedings of 7th International Symposium on Water?Rock Interaction, Park City, UT, July 9?23, 1992, pp 23?33
Plummer LN, Busenberg E, Glynn PD, Blum AE (1992) Dissolution of aragonite-strontianite solid solutions in non-stoichiometric Sr(HCO3)2-Ca(HCO3)2-CO2-H2O solutions. Geochim Cosmochim Acta 56:3045?3072
Plummer LN, Michel RL, Thurman EM, Glynn PD (1993) Environmental tracers for age-dating young ground water. In: Alley WM (ed) Regional ground-water quality, Vol 11. Van Nostrand Reinhold, New York, pp 255?294
Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH?Version 2.0. US Geol Surv Water Resour Invest Rep 94-4169, 130 pp
Plummer LN, Busenberg E, Riggs AC (2000) In-situ growth of calcite at Devils Hole, Nevada: comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth. Aquatic Geochem 6:257?274
Plummer LN, Busenberg E (2000) Chlorofluorocarbons. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology chap 15. Kluwer Academic Publishers, Boston, pp 441?478
Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Ground-water residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179:93?111
Plummer LN, Sprinkle CL (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol J 9:127?150
Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004a) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resour Invest Rep 03-4131, 395 pp
Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004b) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow. Hydrogeol J 12(4):359?388
Plummer LN, Sanford WE, Bexfield LM, Anderholm SK, Busenberg E (2004c) Using geochemical data and aquifer simulation to characterize recharge and groundwater flow in the Middle Rio Grande Basin, USA. In: Hogan JF, Phillips FM, Scanlon BR (eds) Ground-water recharge in a desert environment: the southwestern United States. Am Geophys Union Monogr, Water Science and Application Series, Washington, DC, 9:185?216
Plummer LN (2005) Dating of young groundwater. In: Proceedings of International Symposium on Isotope Hydrology Integrated Water Resources Management, May 19?23, 2003. International Atomic Energy Agency, Vienna, Austria (in press)
Poreda RJ, Cerling TE, Solomon DK (1988) Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. J Hydrol 103:1?9
Pourbaix MJN (1949) Thermodynamics of dilute aqueous solutions. Edward Arnold and Co., London, 136 pp
Prasad A, Simmons CT (2003) Unstable density-driven flow in heterogeneous porous media: a stochastic study of the Elder (1967b) ?short heater? problem. Water Resour Res 39(1), 21p(1007) doi:10.1029/2002WR001290
Prieto M, Fernandez-Gonzalez A, Becker U, Putnis A (2000) Computing Lippmann diagrams from direct calculation of mixing properties of solid-solutions: application to the barite?celestite system. Aquat Geochem 6:133?146
Pucci AA (1999) Sulfate transport in a coastal plain confining unit, New Jersey, USA. Hydrogeol J 7(2):251-263
Rademacher LK, Clark JF, Hudson GB, Erman DC, Erman NA (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin; Nevada County, California. Chem Geol 179:37?51
Reardon EJ (1981) Kd?s?can they be used to describe reversible ion sorption reaction in contaminant migration? Ground Water 19:279?286
Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) Estimation and corroboration of shallow ground-water flow paths and travel times by environmental tracer and hydraulic analyses?A case study near Locust Grove, Maryland. Water Resour Res 30:421?433
Renick BC (1924) Base exchange in ground water by silicates as illustrated in Montana. US Geol Surv Water Supply Paper 520-D
Robertson JB, Schoen R, Barraclough JT (1974) The influence of liquid waste disposal on the geochemistry of water at the National Reactor Testing Station, Idaho: 1952?1970. US Geol Surv Open-File Rep IDO-22053, 231 pp
Ronen D, Magaritz M, Levy I (1987) An in situ multilevel sampler for preventive monitoring and study of hydrochemical profiles in aquifers. Ground Water Monit Rev 7:69?74
Rosenthal E, Jones BF, Weinberger G (1998) The chemical evolution of Kurnub Group paleowater in the Sinai-Negev province - a mass balance approach. Appl Geochem 13(5):553?569
Rozanski K, Gonfiantini R, Araguas-Araguas L (1991) Tritium in the global atmosphere: distribution patterns and recent trends. J Physics G, Nucl Particle Phys 17:S523?S536
Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Am Geophys Union, Geophys Monogr 78:1?36
Runnells DD, Lindberg RD (1990) Selenium in aqueous solutions: the impossibility of obtaining a meaningful Eh using a platinum electrode, with implications for modeling of natural waters. Geology 18:212?215
Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 36(6):1635?1642
Sanford WE (1997) Correcting for diffusion in carbon-14 dating of groundwater. Ground Water 35:357?361
Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004a) Use of environmental tracers to estimate parameters for a predevelopment-ground-water-flow model of the Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resour Invest Rep 03-4286, 102 pp
Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004b) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a groundwater model. Hydrogeol J 12(4):389?407
Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18?39
Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89:353?362
Schlosser P, Stute M, Sonntag C, Munnich KO (1989) Tritiogenic3He in shallow groundwater. Earth Planet Sci Lett 94:245?256
Schlosser P, Dunkle-Shapiro S, Stute M, Aeschbach-Hertig W, Plummer LN, Busenberg E (1998) Tritium/He dating of young groundwater: chronologies for environmental records. In: Isotope techniques in the study of environmental change. International Atomic Energy Agency, Vienna, pp 165?189
Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects and future challenges. Anal Bioanal Chem 378:283?300
Shapiro AM (2002) Cautions and suggestions for geochemical sampling in fractured rock. Groundwater Monit Remed 22:151?164
Shapiro SD, Busenberg E, Focazio MJ, Plummer LN (2004) Historical trends in occurrence and atmospheric inputs of halogenated volatile organic compounds in untreated ground water used as a source of drinking water. Sci Total Environ 321:201?217
Sheets RA, Bair ES, Rowe GL (1998) Use of 3H/3He ages to evaluate and improve groundwater flow models in a complex buried-valley aquifer. Water Resour Res 34:1077?1089
Siegel DI (1991) Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water. Geology 19:433?436
Siegel MD, Anderholm S (1994) Geochemical evolution of groundwater in the Culebra Dolomite near the Waste Isolation Pilot Plant, southeastern New Mexico, USA. Geochim Cosmochim Acta 58:2299?2323
Sillén LG (1967) Master variables and activity scales. In: Gould RF (ed) Equilibrium concepts in natural water systems. Am Chem Soc Adv Chem Ser 67, Washington, DC, pp 45?56
Simmons CT, Fenstemaker TR, Sharp JM Jr (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245?275
Smith RA, Schwarz GE, Alexander RB (1997) Regional interpretation of water-quality monitoring data. Water Resour Res 33:2781?2798
Solomon DK, Sudicky EA (1991) Tritium and helium 3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309?2319
Solomon DK, Schiff SL, Poreda RJ, Clark WB (1993) A validation of the 3H/3He method for determining groundwater recharge. Water Resour Res 29:2951?2962
Solomon DK, Hunt A, Poreda RJ (1996) Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resour Res 32:1805?1813
Solomon DK, Cook PG (1999) 3H and 3He. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Amsterdam, pp 397?424
Sprinkle CL (1989) Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. US Geol Surv Prof Pap 1403-I, 105 pp
Steefel CI, Van Capellen PV (1990) A new kinetic approach to modeling water?rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim Cosmochim Acta 54:2657?2677
Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley-Interscience, New York, 1024 pp
Sturchio NC et al (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503, doi:10.1029/2003GL019234
Stute M, Schlosser P (1993) Principles and applications of the noble gas paleothermometer. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Am Geophys Union Monogr 78:89?100
Stute M, Schlosser P (1999) Atmospheric noble gases. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology chap 11. Kluwer Academic Publishers, Boston, pp 349?377
Stute M, Sonntag C, Deak J, Schlosser P (1992a) Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim Cosmochim Acta 56:2051?2067
Stute M, Schlosser P, Clark JF, Broecker WS (1992b) Paleotemperatures in the southwestern United States derived from noble gases in ground water. Science 256:1000?1003
Stute M, Talma AS (1998) Glacial temperatures and moisture transport regimes reconstructed from noble gases and ?18O, Stampriet aquifer, Namibia. In: Proceedings of Isotope Techniques in the Study of Environmental Change. International Atomic Energy Agency, Vienna, Austria, (1998) IAEA-SM-349/53, pp 307?318
Sudicky EA, Frind EO (1981) Carbon-14 dating of groundwater in confined aquifers: implications of aquitard diffusion. Water Resour Res 17:1060?1064
Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age-dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32:1023?1038
Talma AS, Weaver JMC, Plummer LN, Busenberg E (2000) CFC tracing of groundwater in fractured rock aided with 14C and 3H to identify water mixing. In: Sililo O, Rotterdam O (eds) Groundwater: past achievements and future challenges, pp 635?640
Tamers MA (1967) Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In: Stout GE (ed) Isotope techniques in the hydrologic cycle. Am Geophys Union Monogr 11:143?152
Thomas JM, Welch AH, Preissler AM (1989a) Geochemical evolution of ground water in Smith Creek Valley?a hydrologically closed basin in central Nevada, USA. Appl Geochem 4:493?510
Thomas JM, Carlton SM, Hines LB (1989b) Ground-water hydrology and simulated effects of development in Smith Creek Valley, a hydrologically closed basin in Lander County, Nevada. US Geol Surv Prof Pap 1409-E, 57 pp
Thomas JM, Morse BS, Burr GS, Reines DL (2001) Age dating groundwater using dissolved organic carbon - an example from southern Nevada, USA. In: Cidu R (ed) Proceedings of Tenth International Water?Rock Interactions Symposium, Villasimius, Italy, 10?15 June 2001. Balkema Press, pp 1581?1584
Thorstenson DC, Plummer LN (1977) Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase- example: the magnesian calcites. Am J Sci 277:1203?1223
Thorstenson DC, Fisher DW, Croft MG (1979) The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota. Water Resour Res 15:1479?1498
Thorstenson DC (1984) The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. US Geol Surv Open File Rep 84-072
Thorstenson DC, Weeks EP, Haas H, Woodward JC, Peters CA (1998) The chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada-Data and basic concepts of chemical and physical processes in the mountain. Water Resour Res 34:1507?1529
Thorstenson DC, Parkhurst DL (2002) Calculation of individual isotope equilibrium constants for implementation in geochemical models. US Geol Surv Water Resour Invest Rep 02-4172, 129 pp
Thorstenson DC, Parkhurst DL (2004) Calculation of individual isotope equilibrium constants for geochemical reactions. Geochim Cosmochim Acta 68(11):2449?2465
Torgersen T (1980) Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/Rn ages. J Geochem Explor 13:57?75
Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211?1218
Torgersen T, Ivey GN (1985) Helium accumulation in groundwater, 2: A model for the accumulation of the crustal 4He degassing flux. Geochim Cosmochim Acta 49:2445?2452
Torgersen T, Habermehl MA, Philips FM, Elmore D, Kubik P, Jones BG, Hemmick T, Gove HE (1991) Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia. Water Resour Res 27:3201?3214
Torgersen T (1992) Helium-4 model ages for pore fluids from fractured lithologies: discussion and application. In: Isotopes of noble gases as tracers in environmental studies, Vienna, Proceedings of a Consultants Meeting, May 29?June 2 (1989). International Atomic Energy Agency, Vienna, pp 179?201
Torgersen T, Philips FM (1993) Reply to comment on ?Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia? by Andrews JN and Fontes JCh. Water Resour Res 29:1875?1877
Truesdell AH, Jones BF (1974) WATEQ: a computer program for calculating chemical equilibria of natural waters. US Geol Surv J Res 2:233?248
Varni M, Carrera J (1998) Simulation of groundwater age distributions. Water Resour Res 34(12):3271?3281
Vitvar T, Balderer W (1997) Estimation of mean water residence time and runoff generation by 18O measurements in a Pre-Alpine catchment (Rietholzbach, Eastern Switzerland). Appl Geochem 12:787?796
Vogel JC (1967) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology, Proceedings of Symposium on Isotopes in Hydrology, 14?18 November 1966. International Atomic Energy Agency, Vienna, pp 355?369
Vogel JC, Van Urk H (1975) Isotopic composition of groundwater in semi-arid regions of southern Africa. J Hydrol 25:23?36
Wallin B, Peterman Z (1999) Calcite fracture fillings as indicators of paleohydrology at Laxemar at the Äspö Hard Rock Laboratory, southern Sweden. Appl Geochem 14:953?962
Walton AG (1967) Formation and properties of precipitates. Wiley, New York, 232 pp
Wassenaar LI, Aravena R, Hendry MJ, Fritz P (1991) Controls on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, central Ontario. Water Resour Res 27:1975?1986
Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):1198, doi:10.1029/2001WR000907
White AF, Peterson ML (1990) Role of reactive-surface-area characterization in geochemical kinetic models. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416:461?475
White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals. In: White AF, Brantley SL (eds) Mineral Soc Am Rev Mineral 31:583
White AF, Bullen TD, Schulz MS, Blum AE, Huntington TG, Peters NE (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim Cosmochim Acta 65:847?869
White DE, Hem JD, Waring GA (1963) Chemical composition of subsurface waters. In: Data of geochemistry, 6th edn. US Geol Surv Prof Pap 440-F: F1?F67
Wigley TML, Plummer LN, Pearson FJ Jr (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117?1139
Winograd IJ, Thordarson W (1976) Hydrogeologic and hydrochemical framework, southcentral Great Basin, Nevada-California, with special reference to the Nevada Test Site. US Geol Surv Prof Paper 712-C, 126 pp
Winograd IJ, Pearson FJ Jr (1976) Major carbon-14 anomaly in a region carbonate aquifer: Possible evidence for mega scale channeling, south-central Great Basin. Water Resour Res 12:1125?1143
Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT, Revesz KM (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258:255?260
Winograd IJ, Landwehr JM, Ludwig KR, Coplen TB, Riggs AC (1997) Duration and structure of the last four interglaciations. Quat Res 48(2):141?154
Winograd IJ (2001) Interbasin groundwater flow in South Central Nevada: A further comment on the discussion between Davisson et al. (1999a, 1999b) and Thomas (1999). Water Resour Res 37(2):431?433
Wolery TJ (1979) Calculation of chemical equilibrium between aqueous solution and minerals: The EQ3/6 software package. Lawrence Livermore National Laboratory, Livermore, CA. Rep UCRL-52658
Wolery TJ, Jackson KJ, Bourcier WL, Bruton CJ, Viani BE, Knauss KG, Delany JM (1990) Current status of the EQ3/6 software package for geochemical modeling. In: Melchior DC, Bassett RK (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416:104?116
Yurtsever Y (1983) Models for tracer data analysis. In: Guidebook on nuclear techniques in hydrology, 1983 edn. International Atomic Energy Agency, Vienna. Tech Rep Ser 91, pp 381?402
Zoellmann K, Kinzelbach W, Fulda C (2001a) Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240:187?205
Zoellmann K, Kinzelbach W, Aeschbach-Hertig W (2001b) BOXmodel: evaluating environmental tracer data by the boxmodel approach, accessible at: http://www.baum.ethz.ch/ihw/boxmodel_en.html
Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry, Vol 2: the terrestrial environment, B. Elsevier, New York, NY, pp 1?59
Zuber A (1994) On calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. In: Mathematical models and their applications to isotope studies in groundwater hydrology. International Atomic Energy Agency, Vienna. IAEA-TECDOC-777, pp 11?41