Phân bố địa hóa, phân tách và nguồn gốc của kim loại nặng trong trầm tích sông bị chắn: Sông Longjiang, miền Nam Trung Quốc

Xiaolong Lan1,2, Zengping Ning1, Yizhang Liu1, Qingxiang Xiao1,2, Haiyan Chen1,2, Enzong Xiao3, Tangfu Xiao3
1State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
2University of Chinese Academy of Sciences, Beijing, China
3Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China

Tóm tắt

Trong nghiên cứu này, sáu mẫu trầm tích đã được thu thập từ sáu hồ chứa chứa nước do sông bị chắn nhằm làm rõ sự phân bố địa hóa của các kim loại nặng (As, Cd, Pb, Sb và Zn) ở sông Longjiang, miền Nam Trung Quốc, nơi chịu ảnh hưởng nặng nề từ hoạt động khai thác và tinh luyện kim loại màu. Các mẫu trầm tích đã được xác định đặc điểm địa hóa bằng cách kết hợp phân tích địa hóa, tách riêng từng phần và niên đại 210Pb. Kết quả chỉ ra rằng các trầm tích sông bị ô nhiễm nghiêm trọng bởi các kim loại nặng theo thứ tự Cd > Zn ≈ Pb ≈ Sb > As. Những kim loại nặng này thường có mức độ tích lũy thấp ở trầm tích thượng nguồn do ảnh hưởng nhân tạo hạn chế, nhưng nồng độ của chúng đã tăng vọt ở trầm tích trung nguồn do các hoạt động tinh luyện địa phương. Ở trầm tích hạ nguồn, nồng độ kim loại nặng (ngoại trừ Cd) đã giảm, do ảnh hưởng của việc ngăn chặn của đập và sự đầu vào tàn dư. Mức độ Cadmium có xu hướng gia tăng ở các trầm tích hạ nguồn, điều này được cho là do lượng Cd xả ra mạnh mẽ trong sự kiện ô nhiễm vào năm 2012. Hồ sơ trầm tích đã được xác định từ năm 1985, và một sự suy giảm đáng kể về mức độ tích lũy kim loại nặng có thể được tìm thấy sau năm 2000, cho thấy sự cải thiện trong quản lý môi trường trong giai đoạn này. Kết quả thống kê chỉ ra rằng các hoạt động tinh luyện và khai thác kim loại địa phương là những yếu tố chính đóng góp cho sự tích lũy kim loại nặng trong trầm tích sông bị chắn. Mức độ tích lũy cao và các phần không liên kết của kim loại nặng trong các trầm tích địa phương có thể gây ra mối đe dọa trực tiếp đến sinh vật thủy sinh. Cd gây ra nguy hiểm đáng kể do mức độ tích lũy cực cao và các phần dễ hoạt động cao.

Từ khóa

#kim loại nặng #trầm tích #phân bố địa hóa #ô nhiễm #quản lý môi trường

Tài liệu tham khảo

Ahnstrom ZS, Parker DR (1999) Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Sci Soc Am J 63(6):1650–1658 Beauchemin S, Kwong YTJ, Desbarats AJ, MacKinnon T, Percival JB, Parsons MB, Pandya K (2012) Downstream changes in antimony and arsenic speciation in sediments at a mesothermal gold deposit in British Columbia, Canada. Appl Geochem 27:1953–1965 Bi X, Feng X, Yang Y, Qiu G, Li G, Li F, Liu T, Fu Z, Jin Z (2006) Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ Int 32:883–890 Bing H, Wu Y, Sun Z, Yao S (2011) Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. J Environ Sci 23:1671–1678 Bing H, Wu Y, Zhou J, Li R, Wang J (2016a) Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. Chemosphere 148:211–219 Bing H, Zhou J, Wu Y, Wang X, Sun H, Li R (2016b) Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. Environ Pollut 214:485–496 BSEG (Bulletin of the State of the Environment in Guangxi) (1985–2015). The Guangxi Zhuang Autonomous Region Environmental Protection Bureau (in Chinese) CERLAC (the Compilation of Encyclopedia of Rivers and Lakes in China) (2013) Encyclopedia of Rivers and Lakes in China, Section of Zhujiang river basin. Water Power Press, Beijing (in Chinese) Chen CF, Ju YR, Chen CW, Dong CD (2016) Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan. Chemosphere 165:67–79 Chen M, Wu P, Yu L, Liu S, Ruan B, Hu H, Zhu N, Lin Z (2017) FeOOH-loaded MnO2 nano-composite: an efficient emergency material for thallium pollution incident. J Environ Manag 192:31–38 Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719 CNEMC (China National Environmental Monitoring Center) (1990) Chinese soil element background content. Chinese Environmental Science Press, Beijing (in Chinese) Dai J, Song J, Li X, Yuan H, Li N, Zheng G (2007) Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environ Pollut 145:656–667 Doğan E, Accoe F, Boon N, Bastiaens L, Dejonghe W (2013) Impact of chemical oxidants on the heavy metals and the microbial population in sediments. Water Air Soil Poll 224(2):1386 Dou M, Zuo Q, Zhang J, Li C, Li G (2013) Influence of changes in hydrodynamic conditions on cadmium transport in tidal river network of the Pearl River Delta, China. Environ Monit Assess 185:7501–7516 Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985 Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Sci Rev 57(1):125–176 Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857 Grousset FE, Jouanneau JM, Castaing P, Lavaux G, Latouche C (1999) A 70 year record of contamination from industrial activity along the Garonne River and its tributaries (SW France). Estuarine Coast Shelf S 48(3):401–414 Gutiérrez M, Mickus K, Camacho LM (2016) Abandoned PbZn mining wastes and their mobility as proxy to toxicity: a review. Sci Total Environ 565:392–400 Hu Y, Cheng H (2016) A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions. Environ Pollut 214:400–409 Hu B, Li J, Bi N, Wang H, Yang J, Wei H, Zhang J, Li G, Yin X, Liu M, Zou L, Li S (2015) Seasonal variability and flux of particulate trace elements from the Yellow River: impacts of the anthropogenic flood event. Mar Pollut Bull 91:35–44 Lan X, Ning Z, Xiao Q, Huang Z, Liu Y, Xiao T, Zhao Y, Wu S (2018) Spatial distribution, sources and bioavailability of heavy metals in the surface sediments of Longjiang River, Southern China. Environ Sci 39:748–757 (in Chinese) Li M, Zang S, Xiao H, Wu C (2014) Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China. Ecotoxicology 23:681–688 Liu Y, Xiao T, Ning Z, Li H, Tang J, Zhou G (2013) High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. Appl Geochem 37:149–156 Liu Y, Liu G, Wang J, Wu L (2017) Spatio-temporal variability and fractionation of vanadium (V) in sediments from coal concentrated area of Huai River Basin, China. J Geochem Explor 172:203–210 López DL, Gierlowski-Kordesch E, Hollenkamp C (2010) Geochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: lake hope, Vinton County, Ohio. Water Air Soil Pollut 213(1–4):27–45 Loska K, Cebula J, Pelczar J, Wiechuła D, Kwapuliński J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut 93(1–4):347–365 Najamuddin, Prartono T, Sanusi HS, Nurjaya IW (2016) Seasonal distribution and geochemical fractionation of heavy metals from surface sediment in a tropical estuary of Jeneberang River, Indonesia. Mar Pollut Bull 111:456–462 N’Guessan YM, Probst JL, Bur T, Probst A (2009) Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? Sci Total Environ 407:2939–2952 Oldfield F, Appleby PG, Battarbee RW (1978) Alternative 210Pb dating: results from the New Guinea Highlands and Lough Erne. Nature 271(5643):339–342 SEPA (State Environmental Protection Administration) (2002) Environmental quality standards for surface water (GB 3838-2002) (in Chinese) Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. J Sediment Res 24(3):151–158 Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol Environ Saf 72:1957–1965 Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627 Tao Y, Yuan Z, Xiaona H, Wei M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotox Environ Saf 81:55–64 Taylor SR, Mclennan SM (1985) The continental crust: its composition and evolution. Blackwell, London, pp 57–72 van Griethuysen C, Luitwieler M, Joziasse J, Koelmans AA (2005) Temporal variation of trace metal geochemistry in floodplain lake sediment subject to dynamic hydrological conditions. Environ Pollut 137:281–294 Wang S, Lin C, Cao X (2011) Heavy metals content and distribution in the surface sediments of the Guangzhou section of the Pearl River, Southern China. Environ Earth Sci 64(6):1593 Wang S, Wang Y, Zhang R, Wang W, Xu D, Guo J, Li P, Yu K (2015) Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci Total Environ 532:645–654 Wang H, Liu R, Wang Q, Xu F, Men C, Shen Z (2016) Bioavailability and risk assessment of arsenic in surface sediments of the Yangtze River estuary. Mar Pollut Bull 113:125–131 Wei M, Gui Y (2004) Analysis on the “94·6” storm and flood in Longjiang River Basin. J Hydrol-China 24:62–64 (in Chinese) Wei X, Han L, Gao B, Zhou H, Lu J, Wan X (2016) Distribution, bioavailability, and potential risk assessment of the metals in tributary sediments of Three Gorges Reservoir: the impact of water impoundment. Ecol Indi 61(1–2):667–675 Xiang M, Zhang G, Li L, Wei X, Cai Y (2011) The characteristics of heavy metals in soil around the Hechi antimony-lead smelter, Guangxi, China. Acta Mineral Sin 31:250–255 (in Chinese) Xiao TF, Yang F, Li SH, Zheng BS, Ning ZP (2012) Thallium pollution in China: a geo-environmental perspective. Sci Total Environ 421–422:51–58 Xu Y (2016) Stabilization of heavy metal-contaminated sediment with a chelator and humic acid mixture. Water Air Soil Pollut 228(1):20 Xu D, Wang Y, Zhang R, Guo J, Zhang W, Yu K (2016) Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ Sci Pollut Res 23:9122–9133 Xue PL, Zeng WH (2010) Policy issues on the control of environmental accident hazards in China and their implementation. Procedia Environ Sci 2(1):440–445 Yang SL, Milliman JD, Xu KH, Deng B, Zhang XY, Luo XX (2014a) Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Sci Rev 138:469–486 Yang Z, Xia X, Wang Y, Ji J, Wang D, Hou Q, Yu T (2014b) Dissolved and particulate partitioning of trace elements and their spatial–temporal distribution in the Changjiang River. J Geochem Explor 145:114–123 YCCH (Yearbook Compilation Committee of Hechi) (2016) Statistical Yearbook of China (1985–2015). Guangxi People’s Publishing House, Nanjing (in Chinese) Zhang SK (2002) An overview on the course planning and the constructions of cascade hydropower stations in Longjiang River. Guangxi Dianli Jianshe Keji Xinxi 4:6–20 (in Chinese) Zhang C, Wang L (2001) Multi-element geochemistry of sediments from the Pearl River system, China. Appl Geochem 16:1251–1259 Zhang XJ, Chen C, Mi ZL, Wang C (2013) Emergent cadmium removal technology for drinking water and measures for environmental accident in Guangxi Longjianghe river. Water Wastewater Eng 39:24–32 (in Chinese) Zhang Y, Huo S, Zan F, Xi B, Zhang J, Wu F (2015) Historical records of multiple heavy metals from dated sediment cores in Lake Chenghai, China. Environ Earth Sci 74(5):3897–3906 Zhao J, Hu B, Li J, Yang J, Bai F, Dou Y, Yin X (2013) One hundred-year sedimentary record of heavy metal accumulation in the southeastern Liaodong Bay of China. Environ Earth Sci 71(3):1073–1082