Geochemical analysis of multi-element in archaeological soils from Tappe Rivi in Northeast Iran
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abrahams PW, Entwistle JA, Dodgshon RA (2010) The Ben Lawers historic landscape project: simultaneous multi-element analysis of former settlement and arable soils by X-ray fluorescence spectrometry. J Archaeol Method Theory 17:231–248. https://doi.org/10.1007/s10816-010-9086-8
Anguilano L, Rehren T, Müller W, Rothenberg B (2010) The importance of lead in the silver production at Riotinto (Spain). ArchéoSciences 2010(34):269–276. https://doi.org/10.4000/archeosciences.2833
Asare M, Afriyie J (2020) Tracing the past from the analysis of Cu, Zn, Mn, Sr, and Rb in Archaeological Dark Earth soils from the tropics and temperate zone. Quatern Int 562:13–26. https://doi.org/10.1016/j.quaint.2020.09.017
Asare M, Šmejda L, Horák J, Holodňák P, Černý M, Pavlů V, Hejcman M (2020) Human burials can affect soil elemental composition for millennia—analysis of necrosols from the Corded Ware Culture graveyard in the Czech Republic. Archaeol Anthropol Sci 12. https://doi.org/10.1007/s12520-020-01211-1
Barba L (2007) Chemical residues in lime-plastered archaeological floors. Geo-Archaeology 22:439–452. https://doi.org/10.1002/gea.20160
Bethell P, Mate I (1989) The use of soil phosphate analysis in archaeology: a critique. In: Henderson J (ed) Scientific Analysis in Archaeology and its Interpretation. U.C.L.A. Institute of Archaeology, Los Angeles, pp 1 e 29.
Bintliff JL, Davies BE, Warters A, Gaffney C, Snodgrass AM (1990) Trace metal accumulation in soils on and around ancient settlements in Greece. In: Bottema et al. (eds), pp 159–172.
Charzyński P, Markiewicz M, Majorek M, Bednarek R (2015) Geochemical assessment of soils in the German Nazi concentration camp in Stutthof (Northern Poland). Soil Sci Plant Nutrition 61:47–54.https://doi.org/10.1080/00380768.2014.1000232
Constantinou G (1982) Geological features and ancient exploitation of the Cupriferous sulphide orebodies of Cyprus. In: Muhly JD, RobertMaddin R, Karageorghis V, editors. Early metallurgy in Cyprus 4000–500 B.C. Nicosia. Nicosia: Pierides Foundatio, pp 13–23.
Constantinou G (1992. Ancient coppermining in Cyprus. In: Marangouand A, Psillides K, editors. Cyprus, copper and the sea. Nicosia: Government of Cyprus, pp 43–74.
Cook DE, Kovacevich B, Beach T, Bishop R (2006) Deciphering the inorganic chemical record of ancient human activity using ICPMS: a reconnaissance study of late Classic soil floors at Cancuen, Guatemala”. J Archaeol Sci 33(5):628–640. https://doi.org/10.1016/j.jas.2005.09.019
Dirix K, Muchez P, Degryse P, Kaptijn E, Music B, Vassilieva E, Poblome J (2013) Multi-element soil prospection aiding geophysical and archaeological survey on an archaeological site in suburban Sagalassos (SW-Turkey). J Archaeol Sci 40:2961–2970. https://doi.org/10.1016/j.jas.2013.02.033
Dragović S, Mihailović N, Gajić B (2018) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72(3):491–495. https://doi.org/10.1016/j.chemosphere.2008.02.063
Emslie SD, Brasso R, Patterson WP, Carlos Valera A, Mckenzie A, Silva AM, Gleason JD, Blum JD (2015) Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci Rep 5:14679. https://doi.org/10.1038/srep14679
Entwistle JA, Abrahams PW, Dodgshon RA (1998) Multi-element analysis of soils from Scottish historical sites. Interpreting land-use history through the physical and geochemical analysis of soil. J Archaeol Sci 25:53–68. https://doi.org/10.1006/jasc.1997.0199
Entwistle JA, Abrahams PW, Dodgshon RA (2000) The Geoarchaeological significance and spatial variablility of a range of physical and chemical soil properties from a Former Habitation Site, Isle of Skye. J Archaeol Sci 27:287–303. https://doi.org/10.1006/jasc.1999.0453
Fleisher J, Sulas F (2015) Deciphering public spaces in urban contexts: geophysical survey, multi-element soil analysis, and artifact distributions at the 15th–16th-century AD Swahili settlement of Songo Mnara, Tanzania. J Archaeol Sci 55:55–70. https://doi.org/10.1016/j.jas.2014.12.020
Fontes MPF, Gomes PC (2003) Simultaneous competitive adsorption of heavy metals by the matrix of tropical soils. Appl Geochem 18:795–804. https://doi.org/10.1016/S0883-2927(02)00188-9
García-Alix A, Jimenez-Espejo FJ, Lozano JA, Jiménez-Moreno G, Martinez-Ruiz F, García Sanjuán L, Aranda Jiménez G, García Alfonso E, Ruiz-Puertas G, Scott Anderson R (2013) Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci Total Environ 449:451–460, ISSN 0048–9697, https://doi.org/10.1016/j.scitotenv.2013.01.081.
Hafez IT, Sorrentino G, Faka M, Cuenca-García C, Makarona C, Charalambous A, Nys K, Hermon S (2017) Geochemical survey of soil samples from the archaeological site Dromolaxia-Vyzakia (Cyprus), by means of micro-XRF and statistical approaches. J Archaeol Sci Rep 11(2017):447–462. https://doi.org/10.1016/j.jasrep.2016.12.023
Haslam R, Tibbett M (2004) Sampling and analyzing metals in soils for archaeological prospection: a critique. Geoarchaeology 19:731e751. https://doi.org/10.1002/gea.20022
Hejcman M, Ondráček J, Smrž Z (2011) Ancient waste pits with wood ash irreversibly increase crop production in Central Europe. Plant Soil 339:341–350. https://doi.org/10.1007/s11104-010-0585-x
Hjulstrom B, Isaksson S (2009) Identification of activity area signatures in a reconstructed Iron Age house by combining element and lipid analyses of sediments. J Archaeol Sci 36(2):174–183. https://doi.org/10.1016/j.jas.2008.08.005
Homsey LK, Capo RC (2006) Integrating geochemistry and micromorphology to interpret feature use at Dust Cave, a Paleo-Indian through middle-archaic site in Northwest Alabama. Geoarchaeology 21:237–269. https://doi.org/10.1002/gea.20103
Hong SM, Candelone JP, Patterson CC, Boutron CF (1996) Greenland ice evidence of hemispheric lead pollution 2 millennia ago by Greek and Roman civilizations. Science 1996(265):1841–1843. https://doi.org/10.1126/science.265.5180.1841
Jafari J, Thomalsky J, Farjami M, Jürcke F, Lentschke J, Maass H, Mohammadkhani K, Fassbinder J, Becker F(2019) The Iranian-German Tappe Rivi Project (TRP), North-Khorasan: Report on the 2016 and 2017 fieldworks. Archäologische Mitteilungen aus Iran und Turan. April 2019. ISSN 1434-2758
Jafari J (2015) The second Season of Archaeological study in Tape Rivi, Samangan plain. Unpubl. ICAR report (Tehran 2015) (in Persian).
Janovský M, Karlík P, Horák J, Šmejda L, Opare MA, Beneš J, Hejcman M (2020a) Historical land-use in an abandoned mountain village in the Czech Republic is reflected by the Mg, P, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Zr, and Sr content in contemporary soils. CATENA 187:104347. https://doi.org/10.1016/j.catena.2019.104347
Janovský M, Horák J, Ackermann O, Tavger A, Cassuto D, Šmejda L, Hejcman M, Anker Y, Shai I (2020b) The contribution of POSL and PXRF to the discussion on sedimentary and site formation processes in archaeological contexts of the southern Levant and the interpretation of biblical strata at Tel Burna. Quatern Int. https://doi.org/10.1016/j.quaint.2020.11.045
Jenkins DA (1989) Trace element geochemistry in archaeological sites. Environ Geochem Health 11(2):57–62
Kanthilatha N, Boyd W, Chang N (2014) Multi-element characterization of archaeological floors at the prehistoric archaeological sites at Ban Non Wat and Nong Hua Raet in Northeast Thailand. Quatern Int. https://doi.org/10.1016/j.quaint.2014.07.067
Kawahata H, Yamashita S, Yamaoka K, Okai T, Shimoda G, Imai N (2014) Heavy metal pollution in Ancient Nara, Japan, during the eighth century. Progress Earth Planet Sci 1:15. https://doi.org/10.1186/2197-4284-1-15
Kennett DJ, Anderson AJ, Cruz MJ, Clark GR, Summerhayes GR (2004) Geochemical characterization of Lapita pottery via inductively coupled plasma mass spectrometry (ICP-MS). Archaeometry 46:35–46. https://doi.org/10.1111/j.1475-4754.2004.00142.x
Kiikkilä O, Derome J, Brügger T, Uhlig C, Fritze H (2002) Copper mobility and toxicity of soil percolation water to bacteria in a metal polluted forest soil. Plant Soil 238:273–280. https://doi.org/10.1023/A:1014478818078
King SM (2008) The Spatial Organization of Food Sharing in Early Postclassic households: an application of soil chemistry in Ancient Oaxaca, Mexico. J Archaeol Sci 35:1224–1239. https://doi.org/10.1016/j.jas.2007.08.010
Knudsona KJ, Frinkb L, Brian W, Hoffmanc T, Pricea D (2004) Chemical characterization of Arctic soils: activity area analysis in contemporary Yup’ik fish camps using ICP-AES. J Archaeol Sci 31(2004):443–456. https://doi.org/10.1016/j.jas.2003.09.011
Linderholm J (2007) Soil chemical surveying: a path to a deeper understanding of prehistoric sites and societies in Sweden. Geoarchaeology 22(4):417–438. https://doi.org/10.1002/gea.20159
Lisetskii FN, Stolba VF (2020) Archaeological ash deposits and soils formed on ash in the south of the East European Plain. Quatern Int. https://doi.org/10.1016/J.QUAINT.2020.11.030
López Varela SL, Dore CD (2010) Social spaces of daily life: a reflexive approach to the analysis of chemical residues by multivariate spatial analysis. J Archaeol Method Theory 17(3):249–278. https://doi.org/10.1007/s10816-010-9090-z
Manzanilla L (1996) Corporate groups and domestic activities at Teotihuacan. Lat Am Antiq 7:228–246. https://doi.org/10.2307/971576
Martín-Puertas C, Jiménez-Espejo F, Martínez-Ruiz F, Nieto-Moreno V, Rodrigo M, Mata M, Valero-Garcés B (2010) Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Clim Past 6:807–816. https://doi.org/10.5194/cp-6-807-2010
Marwick B (2005) Element concentrations and magnetic susceptibility of anthrosols: Indicators of prehistoric human occupation in the inland Pilbara, Western Australia. J Archaeol Sci 32:1357–1368. https://doi.org/10.1016/j.jas.2005.03.009
Maskall JE, Thornton I (1998) Chemical partitioning of heavy metals in soils, clays and rocks at historical lead smelting sites. Water Air Soil Pollut 108(3):391–409. https://doi.org/10.1023/A:1005029310495
Middleton WD (2004) Identifying chemical activity residues on prehistoric house floors: a methodology and rationale for multi-elemental characterization of a mild acid extract of anthropogenic sediments. Archaeometry 46:47–65. https://doi.org/10.1111/j.1475-4754.2004.00143.x
Middleton WD, Price TD (1996) Identification of activity areas by multi-element characterization of sediments from modern and archaeological house floors using inductively coupled plasma atomic emission spectroscopy. J Archaeol Sci 23:637–687. https://doi.org/10.1006/jasc.1996.0064
Middleton WD, Barba L, Pecci A, Burton JH, Ortiz A, Salvini L, Suarez R (2010) The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS. J Archaeol Method Theory 17:183–208. https://doi.org/10.1007/s10816-010-9088-6
Mikołajczyk Ł, Milek K (2016) Geostatistical approach to spatial, multi-elemental dataset from an archaeological site in Vatnsfjörður. Iceland J Archaeol Sci Reports 9(2016):577–585. https://doi.org/10.1016/j.jasrep.2016.08.036
Misarti N, Finney BP, Maschner H (2011) Reconstructing site organization in the eastern Aleutian Islands, Alaska using multi-element chemical analysis of soils. J Archaeol Sci 38(7):1441–1455. https://doi.org/10.1016/j.jas.2011.02.007
Monge G, Jimenez-Espejo FJ, García-Alix A, Martínez-Ruiz F, Mattielli N, Finlayson C, Ohkouchi N, Cortés M, Bermúdez de Castro JM, Blasco R, Rosell J, Carriόn J, Rodríguez-Vidal J, Finlayson G (2015) Earliest evidence of pollution by heavy metals in archaeological sites. Sci Rep 5:14252. https://doi.org/10.1038/srep14252.1441-1455
Monge G, Jimenez-Espejo F, Manuel Pozo J, Carretero MI, Barroso C (2016) A geochemical multi-proxy approach for anthropogenic processes in a MiddleeUpper Pleistocene endokarstic deposit. Quat Int 407:140e149. https://doi.org/10.1016/j.quaint.2016.02.004
Monna F, Hamer K, Léveque J, Sauer M (2000) Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). J Geochem Explor 68(3):201–210. https://doi.org/10.1016/S0375-6742(00)00005-4
Monna F, Galop D, Carozza L, Tual M, Beyrie A, Marembert F, Chateau C, Dominik J, Grousset FE (2004) Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Sci Total Environ 327:197–214. https://doi.org/10.1016/j.scitotenv.2004.01.010
Nocete F, Álex E, Nieto J, Sáez R, Bayona MR (2005) An archaeological approach to regional environmental pollution in the south-western Iberian Peninsula related to Third millennium BC mining and metallurgy. J Archaeol Sci 32:1566–1576. https://doi.org/10.1016/j.jas.2005.04.012
Nocete F, Queipo de Llano G, Sáenz R, Nieto JM, Inácio N, Bayona MR, Peramo A, Vargas JM, Cruz-Auñón R, Gil-Ibarguchi JI, Santos JF (2008) The smelting quarter of Valencina de la Concepción (Seville, Spain): the specialised copper industry in a political centre of the Guadalquivir valley during the Third Millennium BC (2750–2500 BC). J Archaeol Sci 35(3):717–732. https://doi.org/10.1016/j.jas.2007.05.019
Nocete F, Sáez R, Bayona MR, Peramo A, Inacio N, Abril D (2011) Direct chronometry (14C AMS) of the earliest copper metallurgy in the Guadalquivir Basin (Spain) during the Third millennium BC: first regional database. J Archaeol Sci 38(12):3278–3295. https://doi.org/10.1016/j.jas.2011.07.008
Nriagu J, Pacyna J (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139 (1988). https://doi.org/10.1038/333134a0
Oonk S, Slomp CP, Huisman DJ, Vriend SP (2009a) Effects of site lithology on geochemical signatures of human occupation in archaeological house plans in the Netherlands. J Archaeol Sci 36:1215–1228. https://doi.org/10.1016/j.jas.2009.01.010
Oonk S, Slomp CP, Huisman DJ (2009b) Geochemistry as an Aid in Archaeological prospection and site interpretation: current issues and research directions. Archaeol Prospect 16:35–51. https://doi.org/10.1002/arp.344
Ottaway JH, Matthews MR (1988) Trace element analysis of soil samples from a stratified archaeological site. Environ Geochem Health 10:105–112. https://doi.org/10.1007/BF01758678
Parnell JJ, Terry RE, Golden C (2001) The use of in-field phosphate testing for the rapid identification of middens at Piedras Negras. Guatemala Geoarchaeol Int J 16:855–873. https://doi.org/10.1002/gea.1024
Parnell JJ, Terry RE, Nelson Z (2002) Soil chemical analysis applied as an interpretive tool for ancient human activities in Piedras Negras, Guatemala. J Archaeol Sci 29:379–404. https://doi.org/10.1006/jasc.2002.0735
Patterson CC (1972) Silver stocks and losses in Ancient and Mediaeval times. Econ History Rev 25(2):205–235 (31 pages). https://doi.org/10.2307/2593904
Pîrnăua RG, Patrichea CV, Roşcaa B, Vasiliniuca I, Vornicuc N, Stancd S (2020) Soil spatial patterns analysis at the ancient city of Ibida (Dobrogea, SE Romania), via portable X-ray fluorescence spectrometry and multivariate statistical methods. CATENA 189(2020):104506. https://doi.org/10.1016/j.catena.2020.104506
Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746. https://doi.org/10.1016/j.jhazmat.2010.01.147
Robinson JS, Sharpley AN, Smith SJ (1995) The effect of animal manure applications on the forms of soil phosphorus. In: Steele KF (ed) Animal waste and the land-water interface. CRC Press, Lewis Publishers, Boca Raton, FL, pp 43 e 67.
Rothemberg B, García Palomera F, Bachmann HG, Goethe JW (1989) The Rio Tinto enigma. In: Domergue C, editor. Minería y metalurgia en las antiguas civilizaciones mediterráneas y europeas, vol. 1. Madrid: Ministerio de Cultura, pp 57–70.
Rouhani A, Shahivand R (2020) Potential ecological risk assessment of heavy metals in archaeology on an example of the Tappe Rivi (Iran). SN Applied Sci 2:1–11. https://doi.org/10.1007/s42452-020-3085-5
Rouhani A (2020) Hydrochemistry and quality assessment of qanat water compared to wells using laboratory studies and literature review (case study of Samalghan plain, North Khorasan, Iran). Model. Earth Syst Environ (2020). https://doi.org/10.1007/s40808-020-01014-2
Salisbury RB (2013) Interpolating geochemical patterning of activity zones at Late Neolithic and Early Copper Age settlements in eastern Hungary. J Archaeol Sci 40:926–934. https://doi.org/10.1016/j.jas.2012.10.009
Salisbury RB (2017) Links in the Chain: Evidence for Crafting and Activity Areas in Late Prehistoric Cultural Soilscapes. In: Gorgues A, Rebay-Salisbury K, Salisbury RB (eds) Material Chains in Late Prehistoric Europe and the Mediterranean: Time, Space and Technologies of Production. Mémoire 48. Bordeaux: Ausonius Editions, pp 47–65.
Save S, Kovacik J, Demarly-Cresp F, Issenmann R, Poirier S, Sedlbauer S, Teyssonneyre Y (2020) Large-scale geochemical survey by pXRF spectrometry of archaeological settlements and features: new perspectives on the method. Archaeol Prospect 27:203–218. https://doi.org/10.1002/arp.1773
Schlezinger DR, Howes BL (2000) Organic phosphorus and elemental ratios as indicators of prehistoric human occupation. J Archaeol Sci 27:479–492. https://doi.org/10.1006/jasc.1999.0464
Scott C (2020) Integrating multi-scalar sampling strategies for Archaeological sediment chemistry. J Field Archaeol 45:588–607. https://doi.org/10.1080/00934690.2020.1808751
Smejda L, Hejcmana M, Horaka J, Shaib I (2017) Ancient settlement activities as important sources of nutrients (P, K, S, Zn and Cu) in Eastern Mediterranean ecosystems—the case of biblical Tel Burna. Israel Catena 156(2017):62–73. https://doi.org/10.1016/j.catena.2017.03.024
Souza LC, de Lima HV, Rodrigues S, Kern DC, da Silva AP, Piccinin JL (2016) Chemical and physical properties of an anthropogenic dark earth soil from Bragança, Para, Eastern Amazon. Acta Amazon 46:337–344. https://doi.org/10.1590/1809-4392201505663
Stöllner T (2003) Mining and economy. A discussion of spatial organisations and structures of early raw material exploitation. In: Stöllner T, Körlin G, Steffens G, Cierny J (eds) Man and Mining–Mensch und Bergbau: Studies in Honour of Gerd Weisgerber. Der Anschnitt, Beiheft 16. Bochum: Deutsches Bergbau-Museum, pp 415–446.
Sulas F, Kristiansen S, Wynne-Jones S (2019) Soil geochemistry, phytoliths and artefacts from an early Swahili daub house, Unguja Ukuu, Zanzibar. J Archaeol Sci 103:32–45. https://doi.org/10.1016/j.jas.2019.01.010
Tallarida RJ, Murray RB (1987) Duncan multiple range test. In: Manual of pharmacologic calculations. Springer, New York. https://doi.org/10.1007/978-1-4612-4974-0_38
Terry RE, Nelson SD, Carr J, Parnell J, Hardin PJ, Jackson MW, Houston SD (2000) Quantitative phosphorus measurement: a field test procedure for archaeological site analysis at Piedras Negras, Guatemala. Geoarchaeology 15:151–166. https://doi.org/10.1002/(SICI)1520-6548(200002)15:2%3c151::AID-GEA3%3e3.0.CO;2-T
Terry RE, Fernandez FG, Parnell JJ, Inomata T (2004) The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. J Archaeol Sci 31:1237–1250. https://doi.org/10.1016/j.jas.2004.03.017
Terry RE, Brown BM (2020) Soil Chemistry in Archaeology. In The Encyclopedia of Archaeological Sciences, S.L. López Varela (Ed.). https://doi.org/10.1002/9781119188230.saseas0536
Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
Veselinović G, Životić D, Penezić K, Kašanin-Grubin M, Mijatović N, Malbašić J, Šajnović A (2021) Geochemical characterization of sediments from the archaeological site Vinča – Belo Brdo. Serbia CATENA 196:104914. https://doi.org/10.1016/J.CATENA.2020.104914
Voronin K (2020) Identification of economic activity in a Bronze age settlement in Central Russia Based on the results of XRF analysis of samples of the cultural layer. Minerals 10:607. https://doi.org/10.3390/min10070607
Vyncke K, Degryse P, Vassilieva E, Waelkens M (2011) Identifying domestic functional areas. Chemical analysis of floor sediments at the Classical-Hellenistic settlement at Duzen Tepe (SW Turkey). J Archaeol Sci 38:2274–2292. https://doi.org/10.1016/j.jas.2011.03.034
Weisgerber G (1982) Towards a history of copper mining in Cyprus and the Near East: possibilities of mining archaeology. In: Muhly JD, Robert Maddin R, Karageorghis V (eds) Early Metallurgy in Cyprus 4000–500 B.C. Nicosia: Pierides Foundation, pp 25–32.
Weiss D, Shotyk W, Kempf O (1998) Archives of Atmospheric Lead Pollution. Naturwissenschaften 86:262–275 (1999). https://doi.org/10.1007/s001140050612
Wells EC (2004) Investigating activity patterns in Prehispanic Plazas: weak acid-extraction ICP–AES analysis of Anthrosols at Classic Period El Coyote, Northwestern Honduras. Archaeometry 46:67–84. https://doi.org/10.1111/j.1475-4754.2004.00144.x
Wells EC, Terry RE, Parnell JJ, Hardin PJ, Jackson MW, Houston SD (2000) Chemical analyses of ancient anthrosols in residential areas at Piedras Negras, Guatemala. J Archaeol Sci 27:449–462. https://doi.org/10.1006/jasc.1999.0490
Wilson CA, Davidson DA, Cresser MS (2009) An evalutation of the site specificity of soil elemental signatures for identifying and interpreting former functional areas. J Archaeol Sci 36:2327–2334. https://doi.org/10.1016/j.jas.2009.06.022
Wilson CA, Davidson DA, Cresser MS (2008) Multi-element soil analysis: an assessment of its potential as an aid to archaeological interpretation. J Archaeol Sci 35:412 e 424. https://doi.org/10.1016/j.jas.2007.04.006
Ye C, Li S, Zhang Y, Zhang Q (2011) Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir. China J Hazard Mater 191(1–3):366–372. https://doi.org/10.1016/j.jhazmat.2011.04.090