Genus for knots and links in renormalizable templates with several branch nodes

Springer Science and Business Media LLC - Tập 77 - Trang 1035-1045 - 2014
Pedro Simões1, Luís Silva2, Nuno Franco3
1Department of Mathematics, University of Évora, Évora, Portugal
2CIMA-UE and Department of Mathematics, ISEL - Lisbon Superior Engineering Institute, Lisboa, Portugal
3CIMA-UE and Department of Mathematics, University of Évora, Évora, Portugal

Tóm tắt

We apply kneading theory to describe the knots and links generated by the iteration of renormalizable nonautonomous dynamical systems with reducible kneading invariants, in terms of the links corresponding to each factor. As a consequence we obtain explicit formulas for the genus for this kind of knots and links.

Tài liệu tham khảo

Williams, R.: The structure of Lorenz attractors. Publ. Math. IHES. 50, 73–99 (1979) Birmann, J., Williams, R.F.: Knotted periodic orbits in dynamical systems I: Lorenz’s equations. Topology 22, 47–82 (1983) Guckenheimer, J., Williams, R.: Structural stability of Lorenz attractors. Publ. Math. IHES. 50, 59–72 (1979) Ghrist, R., Holmes, P., Sullivan, M.: Knots and Links in Three-Dimensional Flows. Lecture Notes in Mathematics. Springer, New York (1997) Zhang, C., Han, X., Bi, Q.: Dynamical behaviors of the periodic parameter-switching system. Nonlinear Dyn. 73, 2937 (2013) Franco, N., Silva, L., Simões, P.: Symbolic dynamics and renormalization of nonautonomous \(k\) periodic dynamical systems. J. Differ. Equ. Appl. 19, 27–38 (2013) Franco, N., Silva, L.: Genus and braid index associated to a sequence of renormalizable Lorenz maps. Discrete Contin. Dyn. Syst. (A) 50(2), 565–586 (2012) de Melo, W., van Strien, ZS.: One-dimensional dynamics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25. Springer, Berlin (1993).