Genotypic and Environmental Variations in Grain Cadmium and Arsenic Concentrations Among a Panel of High Yielding Rice Cultivars

Rice - Tập 10 Số 1 - 2017
Guilan Duan1, Guosheng Shao2, Zhong Tang3, Hongping Chen3, Boxun Wang1, Zhu Tang3, Yuping Yang1, Yuechuan Liu4, Fang‐Jie Zhao3
1State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
2Chinese National Rice Research Institute, Hangzhou, 310006, China
3State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
4Youxian Agricultural Bureau of Hunan Province, Hunan, 412300, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abe T, Nonoue Y, Ono N, Omoteno M, Kuramata M, Fukuoka S, Yamamoto T, Yano M, Ishikawa S (2013) Detection of QTLs to Reduce Cadmium Content in Rice Grains Using LAC23/Koshihikari Chromosome Segment Substitution Lines. Breed Sci 63(3):284–291

Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environ Sci Technol 43(24):9361–9367

Bhattacharyya MH, Sacco-Gibson NA, Peterson DP (1992) Cadmium-Induced Bone Loss: Increased Susceptibility in Female Beagles After Ovariectomy. IARC Sci Publ 118:279–286

Bolan NS, Adriano CC, Duraisamy P, Mani A, Arulmozhiselvan K (2003) Immobilization and Phytoavailability of Cadmium in Variable Charge Soils. 1. Effect of Phosphate Addition. Plant Soil 250:83–94

Chaney RL, Kim WI, Kunhikrishnan A, Yang JE, Yong SO (2016) Integrated Management Strategies for Arsenic and Cadmium in Rice Paddy Environments. Geoderma 270:1–2

Chen CJ, Chuang YC, You SL, Lin TM, Wu HY (1986) A Retrospective Study on Malignant Neoplasms of Bladder, Lung and Liver in Blackfoot Disease Endemic Area in Taiwan. Br J Cancer 53(3):399–405

Clemens S, Ma JF (2016) Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Ann Rev Plant Biol 67:489–512

Deng L, Li Z, Wang J, Liu H, Li N, Wu L, Hu P, Luo Y, Christie P (2015) Long-Term Field Phytoextraction of Zinc/Cadmium Contaminated Soil by Sedum Plumbizincicola Under Different Agronomic Strategies. Inter J Phytorem 18(2):134–140

Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2010) Arsenic Accumulation in a Paddy Field in Bangladesh: Seasonal Dynamics and Trends Over a Three-Year Monitoring Period. Environ Sci Technol 44(8):2925–2931

Du Y, Hu XF, Wu XH, ShuY JY, Yan XJ (2013) Affects of Mining Activities on Cd Pollution to the Paddy Soils and Rice Grain in Hunan Province, Central South China. Environ Monit Assess 185(12):9843–9856

Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG (2016) Inositol Transporters AtINT2 and AtINT4 Regulate Arsenic Accumulation in Arabidopsis Seeds. Nat Plants 2(1):15202.

Duan GL, Zhang HM, Liu YX, Jia Y, Hu Y, Cheng WD (2012) Long-Term Fertilization With pig-Biogas Residues Results in Heavy Metal Accumulation in Paddy Field and Rice Grains in Jiaxing of China. Soil Sci Plant Nutr 58:637–646

GB 15618, (1995) National Environmental Protection Bureau Environmental quality standard for soils GB 15618-1995.

GB 2715 (2005) Chinese Food Hygiene Standards. Standards Press of China, Beijing

GB2762 (2012) Chinese Food Hygiene Standards. Standards Press of China, Beijing

Gong WQ, Li LQ, Pan GX (2006) Cd Uptake and Accumulation in Grains by Hybrid Rice in two Paddy Soils: Interactive Effect of Soil Type and Cultivars. Environ Sci 27:1647–1653

He JY, Zhu C, Ren YF, Yan Y, Jiang D (2006) Genotypic Variation in Grain Cadmium Concentration of Lowland Rice. J Plant Nutr Soil Sci 169:711–716

Hu P, Huang J, Ouyang Y, Zhou LQ, Huang JX, Huang YJ, Luo YM, Christie P, Wu LH (2013) Water Management Affects Arsenic and Cadmium Accumulation in Different Rice Cultivars. Environ Geochem Health 35(6):767–78

IARC (1993) IARC Monographs on the evaluation of carcinogenic risks to humans, Vol.58 Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry, Lyon. http://www.iarc.fr

Ishikawa S, Makino T, Ito M, Harada K, Nakada H, & Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C, Matsuyama M, Abe T, Arao T (2016). Low-cadmium rice (oryza sativa l.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Science and Plant Nutrition. 62(4);1-13.

Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-Beam Irradiation, Gene Identification, and Marker-Assisted Breeding in the Development of low-Cadmium Rice. Proc Natl Acad Sci U S A 109(47):19166–19171

Ishikawa S, Ae N, Yano M (2005) Chromosomal Regions With Quantitative Trait Loci Controlling Cadmium Concentration in Brown Rice (Oryza Sativa). New Phytol 168(2):345–350

Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic Diversity of Arsenic Accumulation in Rice and QTL Analysis of Methylated Arsenic in Rice Grains. Rice 6(1):3

Li G, Sun GX, Williams PN, Nunes L, Zhu YG (2011) Inorganic Arsenic in Chinese Food and its Cancer Risk. Environ Int 37:1219–1225

Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of Arsenic Accumulation in Rice With Water Management and Silicon Fertilization. Environ Sci Technol 43:3778–3783

Liu JG, Zhu QS, Zhang ZJ, Xu JK, Yang JC, Wong MH (2005) Variations in Cadmium Accumulation Among Rice Cultivars and Types and the Selection of Cultivars for Reducing Cadmium in the Diet. J Sci Food Agric 85(1):147–153

Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of Arsenite in Rice and Their Role in Arsenic Accumulation in Rice Grain. Proc Natl Acad Sci U S A 105:9931–9935

Mandal A, Purakayastha TJ, Patra AK, Sanyal SK (2012) Phytoremediation of Arsenic Contaminated Soil by Pteris Vittata ii. Effect on Arsenic Uptake and Rice Yield. Inter J Phytorem 14(6):621–628

MEP, (2014) The Ministry of Environmental Protection; The Ministry of Land and Resources Report on the national soil contamination survey. http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm .

Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-Type of ATPase Affects Root-to-Shoot Cadmium Translocation in Rice by Mediating Efflux into Vacuoles. New Phytol 189(1):190–199

Mondal D, Polya DA (2008) Rice is a Major Exposure Route for Arsenic in Chakdaha Block, Nadia District, West Bengal, India: A Probabilistic Risk Assessment. Appl Geochem 23(11):2987–2998

Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by Rice Capable of Accumulating Cd at High Levels: Reduction of Cd Content of Rice Grain. Environ Sci Technol 43:5878–5883

Murata I, Hirano T, Saeki Y, Nakagawa S (1970) Cadmium Enteropathy, Renal Osteomalacia (“Ita-Ita”Disease in Japan). Bull Soc Int Chir 29:34–42

Nordstrom DK (2002) Public Health-Worldwide Occurrences of Arsenic in Ground Water. Science 296:2143–2145

Norton GJ, Duan GL, Lei M, Zhu YG, Meharg AA, Price AH (2012a) Identification of Quantitative Trait Loci for Rice Grain Element Composition on an Arsenic Impacted Soil: Influence of Flowering Time on Genetic Loci. Ann Appl Biol 161:46–56

Norton GJ, Pinson SRM, Alexander J, McKay S, Hansen H, Duan GL, Islam MR, Islam S, Stroud JL, Zhao FJ, McGrath SP, Zhu YG, Lahner B, Yakubova E, Guerinot ML, Tarpley L, Eizenga GC, Salt DE, Meharg AA, Price AH (2012b) Variation in Grain Arsenic Assessed in a Diverse Panel of Rice (Oryza Sativa) Grown in Multiple Sites. New Phytol 193:650–664

Norton GJ, Duan GL, Dasgupta T, Islam MR, Lei M, Zhu YG, Deacon CM, Moran AC, Islam S, Zhao FJ, Stroud JL, McGrath SP, Feldmann J, Price AH, Meharg AA (2009) Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China and India. Environ Sci Technol 43:8381–8386

NTP (2000) National Toxicology Program, Tenth Report on Carcinogens. Department of Health and Human Services, Research Triangle Park, pp III-42–III-44

Pinson SRM, Tarpley L, Yan WG, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2015) Worldwide Genetic Diversity for Mineral Element Concentrations in Rice Grain. Crop Sci 55(1):294–311

Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MAM, Tasmin A (2007) Arsenic Accumulation in Rice (Oryza Sativa L.) Varieties of Bangladesh: A Glass House Study. Water Air Soil Pollut 185:53–61

Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell 24(5):2155–2167

Satarug S, Moore M (2004) Adverse Health Effect of Chronic Exposure to low-Level Cadmium in Food Stuffs and Cigarette Smoke. Environ Health Perspect 112:1099–1103

Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in Rice (Oryza Sativa) Heavy Metal ATPase 2 (OsHMA2) Restrict the Translocation of Zinc and Cadmium. Plant Cell Physiol 53(1):213–224

Shi SL, Wang T, Chen Z, Tang Z, Wu ZC, Salt DE, Chao DY, Zhao FJ (2016) OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation. Plant Physiol 172:1708–1719

Signes-Pastor AJ, Carey M, Meharg AA (2016) Inorganic Arsenic in Rice-Based Products for Infants and Young Children. Food Chem 191:128–134

Smith A, Lingas E, Rahman M (2000) Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull WHO 78:1093–1103

Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic Tolerance in Arabidopsis is Mediated by two ABCC-Type Phytochelatin Transporters. Proc Natl Acad Sci U S A 107(49):21187–21192

Sun L, Xu XX, Jiang YR, Zhu QH, Yang F, Zhou JQ, Yang YZ, Huang ZY, Li AH, Chen LH, Tang WB, Zhang GY, Wang JR, Xiao GY, Huang DY, Chen CY (2016) Genetic Diversity, Rather Than Cultivar Type, Determines Relative Grain cd Accumulation in Hybrid Rice. Front Plant Sci 7:1407

Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matsuda-Inoguchi N, Ikeda M (2003) Rice as the Most Influential Source of Cadmium Intake Among General Japanese Population. Sci Total Environ 305:41–51

Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009) A Major Quantitative Trait Locus Controlling Cadmium Translocation in Rice (Oryza Sativa). New Phytol 182(3):644–653

Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene Limiting Cadmium Accumulation in Rice. Proc Natl Acad Sci U S A 107:16500–16505

Uraguchi S, Fujiwara T (2013) Rice Breaks Ground for Cadmium-Free Cereals. Curr Opin Plant Biol 16(3):328–334

Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-Affinity Cation Transporter (OsLCT1) Regulates Cadmium Transport into Rice Grains. Proc Natl Acad Sci U S A 108:20959–20964

Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-Shoot Cd Translocation via the Xylem is the Major Process Determining Shoot and Grain Cadmium Accumulation in Rice. J Exp Bot 60:2677–2688

Williams PN, Raab A, Feldmann J, Meharg AA (2007) Market Basket Survey Shows Elevated Levels of As in South Central US Processed Rice Compared to California: Consequences for Human Dietary Exposure. Environ Sci Technol 41:2178–2183

Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009) Occurrence and Partitioning of Cadmium, Arsenic and Lead in Mine Impacted Paddy Rice: Hunan, China. Environ Sci Technol 43:637–642

Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environ Sci Technol 42:5574–5579

Yan J, Wang P, Wang P, Yang M, Lian X, Tang Z, Huang CF, Salt DE, Zhao FJ (2016) A Loss-of-Function Allele of OsHMA3 Associated With High Cadmium Accumulation in Shoots and Grain of Japonica Rice Cultivars. Plant Cell Environ 39(9):1941–1954

Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K, Dong H, Wang D, Zhao FJ, Huang CF, Lian XM (2014) OsNRAMP5 Contributes to Manganese Translocation and Distribution in Rice Shoots. J Exp Bot 65(17):4849–4861

Zhang J, Zhu YG, Zeng DL, Cheng WD, Qian Q, Duan GL (2008) Mapping Quantitative Trait Loci Associated With Arsenic Accumulation in Rice (Oryza Sativa L.). New Phytol 177:350–355

Zhang XQ, Zhang GP, Guo LB, Wang HZ, Zeng DL, Dong GJ, Qian Q, Xue DW (2011) Identification of Quantitative Trait Loci for Cd and Zn Concentrations of Brown Rice Grown in Cd-Polluted Soils. Euphytica 180(2):173–179

Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic Uptake and Metabolism in Plants. New Phytol 181:777–794

Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil Contamination in China: Current Status and Mitigation Strategies. Environ Sci Technol 49(2):750–759

Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies. Ann Rev Plant Biol 61:535–559

Zhen YH, Cheng YJ, Pan GX, Li LQ (2008) Cd, Zn and Se Content of the Polished Rice Samples from Some Chinese Open Markets and Their Relevance to Food Safety. J Saf Environ 8:119–122

Zhu HH, Chen C, Zhu QH, Huang DY (2016) Effects of Soil Acidification and Liming on the Phytoavailability of Cadmium in Paddy Soils of Central Subtropical China. Environ Pollut 219:99–106

Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN (2008) High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice. Environ Sci Technol 42(13):5008–5013