Genotype–phenotype landscapes for immune–pathogen coevolution

Trends in Immunology - Tập 44 - Trang 384-396 - 2023
Alief Moulana1, Thomas Dupic1, Angela M. Phillips2, Michael M. Desai1,3,4,5
1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
2Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
3Department of Physics, Harvard University, Cambridge MA 02138 USA
4NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA
5Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA

Tài liệu tham khảo

Tenthorey, 2022, Evolutionary landscapes of host-virus arms races, Annu. Rev. Immunol., 40, 271, 10.1146/annurev-immunol-072621-084422 Brunham, 1993, Bacterial antigenic variation, host immune response, and pathogen-host coevolution, Infect. Immun., 61, 2273, 10.1128/iai.61.6.2273-2276.1993 Quadeer, 2020, Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape, Nat. Commun., 11, 377, 10.1038/s41467-019-14174-2 Davis, 2020, Viral and atypical respiratory co-infections in COVID-19: a systematic review and meta-analysis, J. Am. Coll. Emerg. Physicians Open, 1, 533, 10.1002/emp2.12128 Wheatley, 2021, Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19, Nat. Commun., 12, 1162, 10.1038/s41467-021-21444-5 Xue, 2017, Parallel evolution of influenza across multiple spatiotemporal scales, eLife, 6, 10.7554/eLife.26875 Jiang, 2013, Lineage structure of the human antibody repertoire in response to influenza vaccination, Sci. Transl. Med., 5, 171ra19, 10.1126/scitranslmed.3004794 Cobey, 2017, Immune history and influenza virus susceptibility, Curr. Opin. Virol., 22, 105, 10.1016/j.coviro.2016.12.004 Tong, 2021, Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike, Cell, 184, 4969, 10.1016/j.cell.2021.07.025 Chen, 2022, Immune recall improves antibody durability and breadth to SARS-CoV-2 variants, Sci. Immunol., 7, 10.1126/sciimmunol.abp8328 Abdelrahman, 2020, Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses, Front. Immunol., 11, 10.3389/fimmu.2020.552909 Bogner, 2006, A global initiative on sharing avian flu data, Nature, 442, 981, 10.1038/442981a Shu, 2017, GISAID: global initiative on sharing all influenza data - from vision to reality, Euro Surveill., 22, 30494, 10.2807/1560-7917.ES.2017.22.13.30494 Zhang, 2018, MPD: a pathogen genome and metagenome database, Database (Oxford), 2018, 10.1093/database/bay055 Shaw, 2020, The phylogenetic range of bacterial and viral pathogens of vertebrates, Mol. Ecol., 29, 3361, 10.1111/mec.15463 Hadfield, 2018, Nextstrain: real-time tracking of pathogen evolution, Bioinformatics, 34, 4121, 10.1093/bioinformatics/bty407 Rambaut, 2020, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology, Nat. Microbiol., 5, 1403, 10.1038/s41564-020-0770-5 Calis, 2014, Characterizing immune repertoires by high throughput sequencing: strategies and applications, Trends Immunol., 35, 581, 10.1016/j.it.2014.09.004 Ravichandran, 2021, Longitudinal antibody repertoire in “mild” versus “severe” COVID-19 patients reveals immune markers associated with disease severity and resolution, Sci. Adv., 7, eabf2467, 10.1126/sciadv.abf2467 Mitsunaga, 2020, Deep characterization of the human antibody response to natural infection using longitudinal immune repertoire sequencing, Mol. Cell. Proteomics, 19, 278, 10.1074/mcp.RA119.001633 Lee, 2019, Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations, Cell Host Microbe, 25, 367, 10.1016/j.chom.2019.01.010 Andrews, 2019, Activation dynamics and immunoglobulin evolution of pre-existing and newly generated human memory B cell responses to influenza hemagglutinin, Immunity, 51, 398, 10.1016/j.immuni.2019.06.024 Horns, 2020, Memory B cell activation, broad anti-influenza antibodies, and bystander activation revealed by single-cell transcriptomics, Cell Rep., 30, 905, 10.1016/j.celrep.2019.12.063 Briney, 2019, Commonality despite exceptional diversity in the baseline human antibody repertoire, Nature, 566, 393, 10.1038/s41586-019-0879-y DeWitt, 2018, Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity, eLife, 7, 10.7554/eLife.38358 Horns, 2019, Signatures of selection in the human antibody repertoire: selective sweeps, competing subclones, and neutral drift, Proc. Natl. Acad. Sci. U. S. A., 116, 1261, 10.1073/pnas.1814213116 Hoehn, 2019, Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination, Proc. Natl. Acad. Sci. U. S. A., 116, 22664, 10.1073/pnas.1906020116 Gupta, 2017, Hierarchical clustering can identify B cell clones with high confidence in Ig repertoire sequencing data, J. Immunol., 198, 2489, 10.4049/jimmunol.1601850 Spisak, 2022, Combining mutation and recombination statistics to infer clonal families in antibody repertoires, bioRxiv Nourmohammad, 2019, Fierce selection and interference in B-cell repertoire response to chronic HIV-1, Mol. Biol. Evol., 36, 2184, 10.1093/molbev/msz143 Hoehn, 2022, Phylogenetic analysis of migration, differentiation, and class switching in B cells, PLoS Comput. Biol., 18, 10.1371/journal.pcbi.1009885 Yermanos, 2018, Tracing antibody repertoire evolution by systems phylogeny, Front. Immunol., 9, 2149, 10.3389/fimmu.2018.02149 Marcou, 2018, High-throughput immune repertoire analysis with IGoR, Nat. Commun., 9, 561, 10.1038/s41467-018-02832-w Minervina, 2021, Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T-cell memory formation after mild COVID-19 infection, eLife, 10, 10.7554/eLife.63502 Jackson, 2014, Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements, Cell Host Microbe, 16, 105, 10.1016/j.chom.2014.05.013 Marée, 2000, Estimating relative fitness in viral competition experiments, J. Virol., 74, 11067, 10.1128/JVI.74.23.11067-11072.2000 Meijers, 2022, Vaccination shapes evolutionary trajectories of SARS-CoV-2, arXiv Jankowiak, 2022, Inferring selection effects in SARS-CoV-2 with Bayesian viral allele selection, PLoS Genet., 18, 10.1371/journal.pgen.1010540 Mesin, 2016, Germinal center B cell dynamics, Immunity, 45, 471, 10.1016/j.immuni.2016.09.001 Mesin, 2020, Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting, Cell, 180, 92, 10.1016/j.cell.2019.11.032 Mudd, 2022, SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans, Cell, 185, 603, 10.1016/j.cell.2021.12.026 Turner, 2020, Human germinal centres engage memory and naive B cells after influenza vaccination, Nature, 586, 127, 10.1038/s41586-020-2711-0 Morris, 2018, Predictive modeling of influenza shows the promise of applied evolutionary biology, Trends Microbiol., 26, 102, 10.1016/j.tim.2017.09.004 Neher, 2016, Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses, Proc. Natl. Acad. Sci. U. S. A., 113, E1701, 10.1073/pnas.1525578113 Kryazhimskiy, 2011, Prevalence of epistasis in the evolution of influenza A surface proteins, PLoS Genet., 7, 10.1371/journal.pgen.1001301 Smith, 2004, Mapping the antigenic and genetic evolution of influenza virus, Science, 305, 371, 10.1126/science.1097211 Luksza, 2014, A predictive fitness model for influenza, Nature, 507, 57, 10.1038/nature13087 Strelkowa, 2012, Clonal interference in the evolution of influenza, Genetics, 192, 671, 10.1534/genetics.112.143396 Neher, 2014, Predicting evolution from the shape of genealogical trees, eLife, 3, 10.7554/eLife.03568 Barrat-Charlaix, 2021, Limited predictability of amino acid substitutions in seasonal influenza viruses, Mol. Biol. Evol., 38, 2767, 10.1093/molbev/msab065 Spisak, 2020, Learning the heterogeneous hypermutation landscape of immunoglobulins from high-throughput repertoire data, Nucleic Acids Res., 48, 10702, 10.1093/nar/gkaa825 Gong, 2013, Stability-mediated epistasis constrains the evolution of an influenza protein, eLife, 2, 10.7554/eLife.00631 Rotem, 2018, Evolution on the biophysical fitness landscape of an RNA virus, Mol. Biol. Evol., 35, 2390, 10.1093/molbev/msy131 Phillips, 2021, Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies, eLife, 10, 10.7554/eLife.71393 Starr, 2020, Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding, Cell, 182, 1295, 10.1016/j.cell.2020.08.012 Tokuriki, 2009, Stability effects of mutations and protein evolvability, Curr. Opin. Struct. Biol., 19, 596, 10.1016/j.sbi.2009.08.003 Wilson, 1990, Structural basis of immune recognition of influenza virus hemagglutinin, Annu. Rev. Immunol., 8, 737, 10.1146/annurev.iy.08.040190.003513 Russell, 2013, Influenza glycoproteins: hemagglutinin and neuraminidase, 67 Lu, 2021, Advances in neutralization assays for SARS-CoV-2, Scand. J. Immunol., 94, PMC8236914, 10.1111/sji.13088 van Regenmortel, 2000, Determination of antibody affinity, J. Immunoass., 21, 211, 10.1080/01971520009349534 Mattiasson, 2010, Immunochemical binding assays for detection and quantification of trace impurities in biotechnological production, Trends Biotechnol., 28, 20, 10.1016/j.tibtech.2009.10.002 Blake, 2004, Kinetic exclusion assays to study high-affinity binding interactions in homogeneous solutions, Methods Mol. Biol., 248, 417 Patching, 2014, Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery, Biochim. Biophys. Acta, 1838, 43, 10.1016/j.bbamem.2013.04.028 Einav, 2022, Harnessing low dimensionality to visualize the antibody–virus landscape for influenza, Nat. Comput. Sci., 3, 164, 10.1038/s43588-022-00375-1 Smith, 1997, Deriving shape space parameters from immunological data, J. Theor. Biol., 189, 141, 10.1006/jtbi.1997.0495 Marchi, 2021, Antigenic waves of virus-immune coevolution, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2103398118 LaMont, 2022, Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1, eLife, 11, 10.7554/eLife.76004 Franz, 2011, Ex vivo characterization and isolation of rare memory B cells with antigen tetramers, Blood, 118, 348, 10.1182/blood-2011-03-341917 Hayakawa, 1987, Isolation of high-affinity memory B cells: phycoerythrin as a probe for antigen-binding cells, Proc. Natl. Acad. Sci. U. S. A., 84, 1379, 10.1073/pnas.84.5.1379 Ouisse, 2017, Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies, BMC Biotechnol., 17, 3, 10.1186/s12896-016-0322-5 Mahendra, 2022, Honing-in antigen-specific cells during antibody discovery: a user-friendly process to mine a deeper repertoire, Commun. Biol., 5, 1157, 10.1038/s42003-022-04129-7 Koel, 2013, Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution, Science, 342, 976, 10.1126/science.1244730 Thyagarajan, 2014, The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin, eLife, 3, 10.7554/eLife.03300 Doud, 2017, Complete mapping of viral escape from neutralizing antibodies, PLoS Pathog., 13, 10.1371/journal.ppat.1006271 Wu, 2020, Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses, Science, 368, 1335, 10.1126/science.aaz5143 Phillips, 2018, Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin, eLife, 7, 10.7554/eLife.38795 Crawford, 2020, Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays, Viruses, 12, 513, 10.3390/v12050513 Javanmardi, 2022, Antibody escape and cryptic cross-domain stabilization in the SARS-CoV-2 Omicron spike protein, Cell Host Microbe, 30, 1242, 10.1016/j.chom.2022.07.016 Haddox, 2018, Mapping mutational effects along the evolutionary landscape of HIV envelope, eLife, 7, 10.7554/eLife.34420 Koenig, 2017, Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding, Proc. Natl. Acad. Sci. U. S. A., 114, E486, 10.1073/pnas.1613231114 Forsyth, 2013, Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing, mAbs, 5, 523, 10.4161/mabs.24979 Adams, 2016, Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves, eLife, 5, 10.7554/eLife.23156 Phillips, 2023, Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody, eLife, 12, 10.7554/eLife.83628 Moulana, 2022, Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1, Nat. Commun., 13, 7011, 10.1038/s41467-022-34506-z Greaney, 2021, Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies, Cell Host Microbe, 29, 463, 10.1016/j.chom.2021.02.003 Starr, 2022, Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution, Science, 377, 420, 10.1126/science.abo7896 Fowler, 2014, Measuring the activity of protein variants on a large scale using deep mutational scanning, Nat. Protoc., 9, 2267, 10.1038/nprot.2014.153 Araya, 2011, Deep mutational scanning: assessing protein function on a massive scale, Trends Biotechnol., 29, 435, 10.1016/j.tibtech.2011.04.003 Sourisseau, 2019, Deep mutational scanning comprehensively maps how Zika envelope protein mutations affect viral growth and antibody escape, J. Virol., 93, 10.1128/JVI.01291-19 Russell, 2018, Influenza hemagglutinin protein stability, activation, and pandemic risk, Trends Microbiol., 26, 841, 10.1016/j.tim.2018.03.005 Wu, 2017, In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity, Nat. Commun., 8, 15371, 10.1038/ncomms15371 Wu, 2014, High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution, Sci. Rep., 4, 4942, 10.1038/srep04942 Duenas-Decamp, 2016, Saturation mutagenesis of the HIV-1 envelope CD4 binding loop reveals residues controlling distinct trimer conformations, PLoS Pathog., 12, 10.1371/journal.ppat.1005988 Wang, 2022, ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants, Emerg Microbes Infect., 11, 1488, 10.1080/22221751.2022.2079426 Lee, 2018, Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants, Proc. Natl. Acad. Sci. U. S. A., 115, E8276, 10.1073/pnas.1806133115 Qi, 2014, A quantitative high-resolution genetic profile rapidly identifies sequence determinants of hepatitis C viral fitness and drug sensitivity, PLoS Pathog., 10, 10.1371/journal.ppat.1004064 Doud, 2016, Accurate measurement of the effects of all amino-acid mutations on influenza hemagglutinin, Viruses, 8, 155, 10.3390/v8060155 Starr, 2021, Prospective mapping of viral mutations that escape antibodies used to treat COVID-19, Science, 371, 850, 10.1126/science.abf9302 Fujino, 2012, Robust in vitro affinity maturation strategy based on interface-focused high-throughput mutational scanning, Biochem. Biophys. Res. Commun., 428, 395, 10.1016/j.bbrc.2012.10.066 Hanning, 2022, Deep mutational scanning for therapeutic antibody engineering, Trends Pharmacol. Sci., 43, 123, 10.1016/j.tips.2021.11.010 Greaney, 2022, An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain, Virus Evol., 8, 10.1093/ve/veac021 Taft, 2022, Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain, Cell, 185, 4008, 10.1016/j.cell.2022.08.024 Park, 2022, Epistatic drift causes gradual decay of predictability in protein evolution, Science, 376, 823, 10.1126/science.abn6895 Dejnirattisai, 2022, SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell, 185, 467, 10.1016/j.cell.2021.12.046 Zhou, 2021, Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera, Cell, 184, 2348, 10.1016/j.cell.2021.02.037 Meini, 2015, Quantitative description of a protein fitness landscape based on molecular features, Mol. Biol. Evol., 32, 1774, 10.1093/molbev/msv059 Weinreich, 2006, Darwinian evolution can follow only very few mutational paths to fitter proteins, Science, 312, 111, 10.1126/science.1123539 Schenk, 2013, Patterns of epistasis between beneficial mutations in an antibiotic resistance gene, Mol. Biol. Evol., 30, 1779, 10.1093/molbev/mst096 Poelwijk, 2019, Learning the pattern of epistasis linking genotype and phenotype in a protein, Nat. Commun., 10, 4213, 10.1038/s41467-019-12130-8 Moulana, 2023, The landscape of antibody binding affinity in SARS-CoV-2 Omicron BA.1 evolution, eLife, 12, 10.7554/eLife.83442 McCandlish, 2011, Visualizing fitness landscapes, Evolution, 65, 1544, 10.1111/j.1558-5646.2011.01236.x Starr, 2017, Alternative evolutionary histories in the sequence space of an ancient protein, Nature, 549, 409, 10.1038/nature23902 Olson, 2014, A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain, Curr. Biol., 24, 2643, 10.1016/j.cub.2014.09.072 Bowers, 2018, The use of somatic hypermutation for the affinity maturation of therapeutic antibodies, Methods Mol. Biol., 1827, 479, 10.1007/978-1-4939-8648-4_24 Romero, 2009, Exploring protein fitness landscapes by directed evolution, Nat. Rev. Mol. Cell Biol., 10, 866, 10.1038/nrm2805 Zahradník, 2021, SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution, Nat. Microbiol., 6, 1188, 10.1038/s41564-021-00954-4 Persson, 2018, In vitro evolution of antibodies inspired by in vivo evolution, Front. Immunol., 9, 1391, 10.3389/fimmu.2018.01391 Chan, 2020, Extensive sequence and structural evolution of arginase 2 inhibitory antibodies enabled by an unbiased approach to affinity maturation, Proc. Natl. Acad. Sci. U. S. A., 117, 16949, 10.1073/pnas.1919565117 Rajpal, 2005, A general method for greatly improving the affinity of antibodies by using combinatorial libraries, Proc. Natl. Acad. Sci. U. S. A., 102, 8466, 10.1073/pnas.0503543102 Jespers, 1994, Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen, Biotechnology (N Y), 12, 899 Boder, 2000, Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity, Proc. Natl. Acad. Sci. U. S. A., 97, 10701, 10.1073/pnas.170297297 Rappazzo, 2021, Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody, Science, 371, 823, 10.1126/science.abf4830 Daugherty, 2000, Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies, Proc. Natl. Acad. Sci. U. S. A., 97, 2029, 10.1073/pnas.030527597 de Visser, 2014, Empirical fitness landscapes and the predictability of evolution, Nat. Rev. Genet., 15, 480, 10.1038/nrg3744 Mustonen, 2009, From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation, Trends Genet., 25, 111, 10.1016/j.tig.2009.01.002 Bloom, 2009, In the light of directed evolution: pathways of adaptive protein evolution, Proc. Natl. Acad. Sci. U. S. A., 106, 9995, 10.1073/pnas.0901522106 Chan, 2021, Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies, Emerg. Top. Life Sci., 5, 601, 10.1042/ETLS20200331 Moore, 2012, Engineering knottins as novel binding agents, Methods Enzymol., 503, 223, 10.1016/B978-0-12-396962-0.00009-4 Gai, 2007, Yeast surface display for protein engineering and characterization, Curr. Opin. Struct. Biol., 17, 467, 10.1016/j.sbi.2007.08.012 Hunter, 2016, Cell-binding assays for determining the affinity of protein-protein interactions: technologies and considerations, Methods Enzymol., 580, 21, 10.1016/bs.mie.2016.05.002 Boder, 1997, Yeast surface display for screening combinatorial polypeptide libraries, Nat. Biotechnol., 15, 553, 10.1038/nbt0697-553 Smith, 1985, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, Science, 228, 1315, 10.1126/science.4001944 Vazquez-Lombardi, 2022, High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity, Immunity, 55, 1953, 10.1016/j.immuni.2022.09.004 Hoffmann, 2000, A DNA transfection system for generation of influenza A virus from eight plasmids, Proc. Natl. Acad. Sci. U. S. A., 97, 6108, 10.1073/pnas.100133697 Bloom, 2014, An experimentally determined evolutionary model dramatically improves phylogenetic fit, Mol. Biol. Evol., 31, 1956, 10.1093/molbev/msu173 Phillips, 2017, Host proteostasis modulates influenza evolution, eLife, 6, 10.7554/eLife.28652 Acevedo, 2014, Mutational and fitness landscapes of an RNA virus revealed through population sequencing, Nature, 505, 686, 10.1038/nature12861