Genotype–phenotype landscapes for immune–pathogen coevolution
Tài liệu tham khảo
Tenthorey, 2022, Evolutionary landscapes of host-virus arms races, Annu. Rev. Immunol., 40, 271, 10.1146/annurev-immunol-072621-084422
Brunham, 1993, Bacterial antigenic variation, host immune response, and pathogen-host coevolution, Infect. Immun., 61, 2273, 10.1128/iai.61.6.2273-2276.1993
Quadeer, 2020, Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape, Nat. Commun., 11, 377, 10.1038/s41467-019-14174-2
Davis, 2020, Viral and atypical respiratory co-infections in COVID-19: a systematic review and meta-analysis, J. Am. Coll. Emerg. Physicians Open, 1, 533, 10.1002/emp2.12128
Wheatley, 2021, Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19, Nat. Commun., 12, 1162, 10.1038/s41467-021-21444-5
Xue, 2017, Parallel evolution of influenza across multiple spatiotemporal scales, eLife, 6, 10.7554/eLife.26875
Jiang, 2013, Lineage structure of the human antibody repertoire in response to influenza vaccination, Sci. Transl. Med., 5, 171ra19, 10.1126/scitranslmed.3004794
Cobey, 2017, Immune history and influenza virus susceptibility, Curr. Opin. Virol., 22, 105, 10.1016/j.coviro.2016.12.004
Tong, 2021, Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike, Cell, 184, 4969, 10.1016/j.cell.2021.07.025
Chen, 2022, Immune recall improves antibody durability and breadth to SARS-CoV-2 variants, Sci. Immunol., 7, 10.1126/sciimmunol.abp8328
Abdelrahman, 2020, Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses, Front. Immunol., 11, 10.3389/fimmu.2020.552909
Bogner, 2006, A global initiative on sharing avian flu data, Nature, 442, 981, 10.1038/442981a
Shu, 2017, GISAID: global initiative on sharing all influenza data - from vision to reality, Euro Surveill., 22, 30494, 10.2807/1560-7917.ES.2017.22.13.30494
Zhang, 2018, MPD: a pathogen genome and metagenome database, Database (Oxford), 2018, 10.1093/database/bay055
Shaw, 2020, The phylogenetic range of bacterial and viral pathogens of vertebrates, Mol. Ecol., 29, 3361, 10.1111/mec.15463
Hadfield, 2018, Nextstrain: real-time tracking of pathogen evolution, Bioinformatics, 34, 4121, 10.1093/bioinformatics/bty407
Rambaut, 2020, A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology, Nat. Microbiol., 5, 1403, 10.1038/s41564-020-0770-5
Calis, 2014, Characterizing immune repertoires by high throughput sequencing: strategies and applications, Trends Immunol., 35, 581, 10.1016/j.it.2014.09.004
Ravichandran, 2021, Longitudinal antibody repertoire in “mild” versus “severe” COVID-19 patients reveals immune markers associated with disease severity and resolution, Sci. Adv., 7, eabf2467, 10.1126/sciadv.abf2467
Mitsunaga, 2020, Deep characterization of the human antibody response to natural infection using longitudinal immune repertoire sequencing, Mol. Cell. Proteomics, 19, 278, 10.1074/mcp.RA119.001633
Lee, 2019, Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations, Cell Host Microbe, 25, 367, 10.1016/j.chom.2019.01.010
Andrews, 2019, Activation dynamics and immunoglobulin evolution of pre-existing and newly generated human memory B cell responses to influenza hemagglutinin, Immunity, 51, 398, 10.1016/j.immuni.2019.06.024
Horns, 2020, Memory B cell activation, broad anti-influenza antibodies, and bystander activation revealed by single-cell transcriptomics, Cell Rep., 30, 905, 10.1016/j.celrep.2019.12.063
Briney, 2019, Commonality despite exceptional diversity in the baseline human antibody repertoire, Nature, 566, 393, 10.1038/s41586-019-0879-y
DeWitt, 2018, Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity, eLife, 7, 10.7554/eLife.38358
Horns, 2019, Signatures of selection in the human antibody repertoire: selective sweeps, competing subclones, and neutral drift, Proc. Natl. Acad. Sci. U. S. A., 116, 1261, 10.1073/pnas.1814213116
Hoehn, 2019, Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination, Proc. Natl. Acad. Sci. U. S. A., 116, 22664, 10.1073/pnas.1906020116
Gupta, 2017, Hierarchical clustering can identify B cell clones with high confidence in Ig repertoire sequencing data, J. Immunol., 198, 2489, 10.4049/jimmunol.1601850
Spisak, 2022, Combining mutation and recombination statistics to infer clonal families in antibody repertoires, bioRxiv
Nourmohammad, 2019, Fierce selection and interference in B-cell repertoire response to chronic HIV-1, Mol. Biol. Evol., 36, 2184, 10.1093/molbev/msz143
Hoehn, 2022, Phylogenetic analysis of migration, differentiation, and class switching in B cells, PLoS Comput. Biol., 18, 10.1371/journal.pcbi.1009885
Yermanos, 2018, Tracing antibody repertoire evolution by systems phylogeny, Front. Immunol., 9, 2149, 10.3389/fimmu.2018.02149
Marcou, 2018, High-throughput immune repertoire analysis with IGoR, Nat. Commun., 9, 561, 10.1038/s41467-018-02832-w
Minervina, 2021, Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T-cell memory formation after mild COVID-19 infection, eLife, 10, 10.7554/eLife.63502
Jackson, 2014, Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements, Cell Host Microbe, 16, 105, 10.1016/j.chom.2014.05.013
Marée, 2000, Estimating relative fitness in viral competition experiments, J. Virol., 74, 11067, 10.1128/JVI.74.23.11067-11072.2000
Meijers, 2022, Vaccination shapes evolutionary trajectories of SARS-CoV-2, arXiv
Jankowiak, 2022, Inferring selection effects in SARS-CoV-2 with Bayesian viral allele selection, PLoS Genet., 18, 10.1371/journal.pgen.1010540
Mesin, 2016, Germinal center B cell dynamics, Immunity, 45, 471, 10.1016/j.immuni.2016.09.001
Mesin, 2020, Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting, Cell, 180, 92, 10.1016/j.cell.2019.11.032
Mudd, 2022, SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans, Cell, 185, 603, 10.1016/j.cell.2021.12.026
Turner, 2020, Human germinal centres engage memory and naive B cells after influenza vaccination, Nature, 586, 127, 10.1038/s41586-020-2711-0
Morris, 2018, Predictive modeling of influenza shows the promise of applied evolutionary biology, Trends Microbiol., 26, 102, 10.1016/j.tim.2017.09.004
Neher, 2016, Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses, Proc. Natl. Acad. Sci. U. S. A., 113, E1701, 10.1073/pnas.1525578113
Kryazhimskiy, 2011, Prevalence of epistasis in the evolution of influenza A surface proteins, PLoS Genet., 7, 10.1371/journal.pgen.1001301
Smith, 2004, Mapping the antigenic and genetic evolution of influenza virus, Science, 305, 371, 10.1126/science.1097211
Luksza, 2014, A predictive fitness model for influenza, Nature, 507, 57, 10.1038/nature13087
Strelkowa, 2012, Clonal interference in the evolution of influenza, Genetics, 192, 671, 10.1534/genetics.112.143396
Neher, 2014, Predicting evolution from the shape of genealogical trees, eLife, 3, 10.7554/eLife.03568
Barrat-Charlaix, 2021, Limited predictability of amino acid substitutions in seasonal influenza viruses, Mol. Biol. Evol., 38, 2767, 10.1093/molbev/msab065
Spisak, 2020, Learning the heterogeneous hypermutation landscape of immunoglobulins from high-throughput repertoire data, Nucleic Acids Res., 48, 10702, 10.1093/nar/gkaa825
Gong, 2013, Stability-mediated epistasis constrains the evolution of an influenza protein, eLife, 2, 10.7554/eLife.00631
Rotem, 2018, Evolution on the biophysical fitness landscape of an RNA virus, Mol. Biol. Evol., 35, 2390, 10.1093/molbev/msy131
Phillips, 2021, Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies, eLife, 10, 10.7554/eLife.71393
Starr, 2020, Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding, Cell, 182, 1295, 10.1016/j.cell.2020.08.012
Tokuriki, 2009, Stability effects of mutations and protein evolvability, Curr. Opin. Struct. Biol., 19, 596, 10.1016/j.sbi.2009.08.003
Wilson, 1990, Structural basis of immune recognition of influenza virus hemagglutinin, Annu. Rev. Immunol., 8, 737, 10.1146/annurev.iy.08.040190.003513
Russell, 2013, Influenza glycoproteins: hemagglutinin and neuraminidase, 67
Lu, 2021, Advances in neutralization assays for SARS-CoV-2, Scand. J. Immunol., 94, PMC8236914, 10.1111/sji.13088
van Regenmortel, 2000, Determination of antibody affinity, J. Immunoass., 21, 211, 10.1080/01971520009349534
Mattiasson, 2010, Immunochemical binding assays for detection and quantification of trace impurities in biotechnological production, Trends Biotechnol., 28, 20, 10.1016/j.tibtech.2009.10.002
Blake, 2004, Kinetic exclusion assays to study high-affinity binding interactions in homogeneous solutions, Methods Mol. Biol., 248, 417
Patching, 2014, Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery, Biochim. Biophys. Acta, 1838, 43, 10.1016/j.bbamem.2013.04.028
Einav, 2022, Harnessing low dimensionality to visualize the antibody–virus landscape for influenza, Nat. Comput. Sci., 3, 164, 10.1038/s43588-022-00375-1
Smith, 1997, Deriving shape space parameters from immunological data, J. Theor. Biol., 189, 141, 10.1006/jtbi.1997.0495
Marchi, 2021, Antigenic waves of virus-immune coevolution, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2103398118
LaMont, 2022, Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1, eLife, 11, 10.7554/eLife.76004
Franz, 2011, Ex vivo characterization and isolation of rare memory B cells with antigen tetramers, Blood, 118, 348, 10.1182/blood-2011-03-341917
Hayakawa, 1987, Isolation of high-affinity memory B cells: phycoerythrin as a probe for antigen-binding cells, Proc. Natl. Acad. Sci. U. S. A., 84, 1379, 10.1073/pnas.84.5.1379
Ouisse, 2017, Antigen-specific single B cell sorting and expression-cloning from immunoglobulin humanized rats: a rapid and versatile method for the generation of high affinity and discriminative human monoclonal antibodies, BMC Biotechnol., 17, 3, 10.1186/s12896-016-0322-5
Mahendra, 2022, Honing-in antigen-specific cells during antibody discovery: a user-friendly process to mine a deeper repertoire, Commun. Biol., 5, 1157, 10.1038/s42003-022-04129-7
Koel, 2013, Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution, Science, 342, 976, 10.1126/science.1244730
Thyagarajan, 2014, The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin, eLife, 3, 10.7554/eLife.03300
Doud, 2017, Complete mapping of viral escape from neutralizing antibodies, PLoS Pathog., 13, 10.1371/journal.ppat.1006271
Wu, 2020, Different genetic barriers for resistance to HA stem antibodies in influenza H3 and H1 viruses, Science, 368, 1335, 10.1126/science.aaz5143
Phillips, 2018, Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin, eLife, 7, 10.7554/eLife.38795
Crawford, 2020, Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays, Viruses, 12, 513, 10.3390/v12050513
Javanmardi, 2022, Antibody escape and cryptic cross-domain stabilization in the SARS-CoV-2 Omicron spike protein, Cell Host Microbe, 30, 1242, 10.1016/j.chom.2022.07.016
Haddox, 2018, Mapping mutational effects along the evolutionary landscape of HIV envelope, eLife, 7, 10.7554/eLife.34420
Koenig, 2017, Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding, Proc. Natl. Acad. Sci. U. S. A., 114, E486, 10.1073/pnas.1613231114
Forsyth, 2013, Deep mutational scanning of an antibody against epidermal growth factor receptor using mammalian cell display and massively parallel pyrosequencing, mAbs, 5, 523, 10.4161/mabs.24979
Adams, 2016, Measuring the sequence-affinity landscape of antibodies with massively parallel titration curves, eLife, 5, 10.7554/eLife.23156
Phillips, 2023, Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody, eLife, 12, 10.7554/eLife.83628
Moulana, 2022, Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1, Nat. Commun., 13, 7011, 10.1038/s41467-022-34506-z
Greaney, 2021, Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies, Cell Host Microbe, 29, 463, 10.1016/j.chom.2021.02.003
Starr, 2022, Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution, Science, 377, 420, 10.1126/science.abo7896
Fowler, 2014, Measuring the activity of protein variants on a large scale using deep mutational scanning, Nat. Protoc., 9, 2267, 10.1038/nprot.2014.153
Araya, 2011, Deep mutational scanning: assessing protein function on a massive scale, Trends Biotechnol., 29, 435, 10.1016/j.tibtech.2011.04.003
Sourisseau, 2019, Deep mutational scanning comprehensively maps how Zika envelope protein mutations affect viral growth and antibody escape, J. Virol., 93, 10.1128/JVI.01291-19
Russell, 2018, Influenza hemagglutinin protein stability, activation, and pandemic risk, Trends Microbiol., 26, 841, 10.1016/j.tim.2018.03.005
Wu, 2017, In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity, Nat. Commun., 8, 15371, 10.1038/ncomms15371
Wu, 2014, High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution, Sci. Rep., 4, 4942, 10.1038/srep04942
Duenas-Decamp, 2016, Saturation mutagenesis of the HIV-1 envelope CD4 binding loop reveals residues controlling distinct trimer conformations, PLoS Pathog., 12, 10.1371/journal.ppat.1005988
Wang, 2022, ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants, Emerg Microbes Infect., 11, 1488, 10.1080/22221751.2022.2079426
Lee, 2018, Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants, Proc. Natl. Acad. Sci. U. S. A., 115, E8276, 10.1073/pnas.1806133115
Qi, 2014, A quantitative high-resolution genetic profile rapidly identifies sequence determinants of hepatitis C viral fitness and drug sensitivity, PLoS Pathog., 10, 10.1371/journal.ppat.1004064
Doud, 2016, Accurate measurement of the effects of all amino-acid mutations on influenza hemagglutinin, Viruses, 8, 155, 10.3390/v8060155
Starr, 2021, Prospective mapping of viral mutations that escape antibodies used to treat COVID-19, Science, 371, 850, 10.1126/science.abf9302
Fujino, 2012, Robust in vitro affinity maturation strategy based on interface-focused high-throughput mutational scanning, Biochem. Biophys. Res. Commun., 428, 395, 10.1016/j.bbrc.2012.10.066
Hanning, 2022, Deep mutational scanning for therapeutic antibody engineering, Trends Pharmacol. Sci., 43, 123, 10.1016/j.tips.2021.11.010
Greaney, 2022, An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain, Virus Evol., 8, 10.1093/ve/veac021
Taft, 2022, Deep mutational learning predicts ACE2 binding and antibody escape to combinatorial mutations in the SARS-CoV-2 receptor-binding domain, Cell, 185, 4008, 10.1016/j.cell.2022.08.024
Park, 2022, Epistatic drift causes gradual decay of predictability in protein evolution, Science, 376, 823, 10.1126/science.abn6895
Dejnirattisai, 2022, SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell, 185, 467, 10.1016/j.cell.2021.12.046
Zhou, 2021, Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera, Cell, 184, 2348, 10.1016/j.cell.2021.02.037
Meini, 2015, Quantitative description of a protein fitness landscape based on molecular features, Mol. Biol. Evol., 32, 1774, 10.1093/molbev/msv059
Weinreich, 2006, Darwinian evolution can follow only very few mutational paths to fitter proteins, Science, 312, 111, 10.1126/science.1123539
Schenk, 2013, Patterns of epistasis between beneficial mutations in an antibiotic resistance gene, Mol. Biol. Evol., 30, 1779, 10.1093/molbev/mst096
Poelwijk, 2019, Learning the pattern of epistasis linking genotype and phenotype in a protein, Nat. Commun., 10, 4213, 10.1038/s41467-019-12130-8
Moulana, 2023, The landscape of antibody binding affinity in SARS-CoV-2 Omicron BA.1 evolution, eLife, 12, 10.7554/eLife.83442
McCandlish, 2011, Visualizing fitness landscapes, Evolution, 65, 1544, 10.1111/j.1558-5646.2011.01236.x
Starr, 2017, Alternative evolutionary histories in the sequence space of an ancient protein, Nature, 549, 409, 10.1038/nature23902
Olson, 2014, A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain, Curr. Biol., 24, 2643, 10.1016/j.cub.2014.09.072
Bowers, 2018, The use of somatic hypermutation for the affinity maturation of therapeutic antibodies, Methods Mol. Biol., 1827, 479, 10.1007/978-1-4939-8648-4_24
Romero, 2009, Exploring protein fitness landscapes by directed evolution, Nat. Rev. Mol. Cell Biol., 10, 866, 10.1038/nrm2805
Zahradník, 2021, SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution, Nat. Microbiol., 6, 1188, 10.1038/s41564-021-00954-4
Persson, 2018, In vitro evolution of antibodies inspired by in vivo evolution, Front. Immunol., 9, 1391, 10.3389/fimmu.2018.01391
Chan, 2020, Extensive sequence and structural evolution of arginase 2 inhibitory antibodies enabled by an unbiased approach to affinity maturation, Proc. Natl. Acad. Sci. U. S. A., 117, 16949, 10.1073/pnas.1919565117
Rajpal, 2005, A general method for greatly improving the affinity of antibodies by using combinatorial libraries, Proc. Natl. Acad. Sci. U. S. A., 102, 8466, 10.1073/pnas.0503543102
Jespers, 1994, Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen, Biotechnology (N Y), 12, 899
Boder, 2000, Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity, Proc. Natl. Acad. Sci. U. S. A., 97, 10701, 10.1073/pnas.170297297
Rappazzo, 2021, Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody, Science, 371, 823, 10.1126/science.abf4830
Daugherty, 2000, Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies, Proc. Natl. Acad. Sci. U. S. A., 97, 2029, 10.1073/pnas.030527597
de Visser, 2014, Empirical fitness landscapes and the predictability of evolution, Nat. Rev. Genet., 15, 480, 10.1038/nrg3744
Mustonen, 2009, From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation, Trends Genet., 25, 111, 10.1016/j.tig.2009.01.002
Bloom, 2009, In the light of directed evolution: pathways of adaptive protein evolution, Proc. Natl. Acad. Sci. U. S. A., 106, 9995, 10.1073/pnas.0901522106
Chan, 2021, Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies, Emerg. Top. Life Sci., 5, 601, 10.1042/ETLS20200331
Moore, 2012, Engineering knottins as novel binding agents, Methods Enzymol., 503, 223, 10.1016/B978-0-12-396962-0.00009-4
Gai, 2007, Yeast surface display for protein engineering and characterization, Curr. Opin. Struct. Biol., 17, 467, 10.1016/j.sbi.2007.08.012
Hunter, 2016, Cell-binding assays for determining the affinity of protein-protein interactions: technologies and considerations, Methods Enzymol., 580, 21, 10.1016/bs.mie.2016.05.002
Boder, 1997, Yeast surface display for screening combinatorial polypeptide libraries, Nat. Biotechnol., 15, 553, 10.1038/nbt0697-553
Smith, 1985, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, Science, 228, 1315, 10.1126/science.4001944
Vazquez-Lombardi, 2022, High-throughput T cell receptor engineering by functional screening identifies candidates with enhanced potency and specificity, Immunity, 55, 1953, 10.1016/j.immuni.2022.09.004
Hoffmann, 2000, A DNA transfection system for generation of influenza A virus from eight plasmids, Proc. Natl. Acad. Sci. U. S. A., 97, 6108, 10.1073/pnas.100133697
Bloom, 2014, An experimentally determined evolutionary model dramatically improves phylogenetic fit, Mol. Biol. Evol., 31, 1956, 10.1093/molbev/msu173
Phillips, 2017, Host proteostasis modulates influenza evolution, eLife, 6, 10.7554/eLife.28652
Acevedo, 2014, Mutational and fitness landscapes of an RNA virus revealed through population sequencing, Nature, 505, 686, 10.1038/nature12861