Genomics and early cellular evolution. The origin of the DNA world
Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie - Tập 324 - Trang 1067-1076 - 2001
Tài liệu tham khảo
Woese, 1990, Towards a natural system of organisms : proposal for the domains Archae, Bacteria, and Eucarya, Proc. Natl. Acad. Sci. USA, 87, 4576, 10.1073/pnas.87.12.4576
Philippe, 2000, Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions, Proc. R. Soc. Lond. B Biol. Sci, 267, 1213, 10.1098/rspb.2000.1130
Vivares, 2000, Towards the minimal eukaryotic parasitic genome, Curr. Opin. Microbiol., 5, 463, 10.1016/S1369-5274(00)00123-5
Forterre, 1998, Was our ancestor actually hyperthermophile?, 137
Galtier, 1999, A non hyperthermophilic common ancestor to extant life forms, Science, 283, 220, 10.1126/science.283.5399.220
Philippe, 1999, The rooting of the universal tree of life is not reliable, J. Mol. Evol., 49, 509, 10.1007/PL00006573
Lopez, 1999, The root of the tree of life in the light of the covarion model, J. Mol. Evol., 49, 496, 10.1007/PL00006572
Brinkmann, 1999, Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies, Mol. Biol. Evol., 16, 817, 10.1093/oxfordjournals.molbev.a026166
Lopez-Garcia, 1999, Metabolic symbiosis at the origin of eukaryotes, Trends Biochem. Sci., 24, 88, 10.1016/S0968-0004(98)01342-5
http://www.tigr.org/tdb/mdb/mdbcomplete.html
Makarova, 1999, Comparative genomics of the Archaea 〚Euryarchaeota〛: evolution of conserved protein families, the stable core, and the variable shell, Genome Res., 9, 608, 10.1101/gr.9.7.608
Sicheritz-Ponten, 2001, A phylogenomic approach to microbial evolution, Nucleic Acids Res., 29, 545, 10.1093/nar/29.2.545
Tatusov, 2001, The COG database: new developments in phylogenetic classification of proteins from complete genomes, Nucleic Acids Res., 29, 22, 10.1093/nar/29.1.22
Lake, 1984, Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes, Proc. Natl. Acad. Sci. USA, 81, 3786, 10.1073/pnas.81.12.3786
Rivera, 1992, Evidence that eukaryotes and eocyte prokaryotes are immediate relatives, Science, 257, 74, 10.1126/science.1621096
Cammarano, 1999, The archaea monophyly issue: A phylogeny of translational elongation factor G 〚2〛 sequences inferred from an optimized selection of alignment positions, J. Mol. Evol., 49, 524, 10.1007/PL00006574
Faguy, 1999, Lessons from the Aeropyrum pernix genome, Curr. Biol., 9, R883, 10.1016/S0960-9822(00)80074-3
Natale, 2000, Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins 〚COGs〛, Genome Biology, 1, 1, 10.1186/gb-2000-1-5-research0009
Myllykallio, 2000, Mapping of a chromosome replication origin in an archaeon – Response, Trends Microbiol., 8, 537, 10.1016/S0966-842X(00)01881-3
Bernander, 2000, Chromosome replication, nucleoid segregation and cell division in archaea, Trends Microbiol., 8, 278, 10.1016/S0966-842X(00)01760-1
Barns, 1996, Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences, Proc. Natl. Acad. Sci. USA, 93, 9188, 10.1073/pnas.93.17.9188
Gupta, 1998, Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes, Microbiol. Mol. Biol. Rev., 62, 1435, 10.1128/MMBR.62.4.1435-1491.1998
Tekaia, 1999, The genomic tree as revealed from whole proteome comparisons, Genome Res., 9, 550, 10.1101/gr.9.6.550
Ruepp, 2000, The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum, Nature, 407, 508, 10.1038/35035069
Doolittle, 1995, The origins and evolution of eukaryotic proteins, Philos Trans. R. Soc. Lond. B Biol. Sci., 349, 235, 10.1098/rstb.1995.0107
Myllykallio, 2000, Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon, Science, 288, 2212, 10.1126/science.288.5474.2212
Edgell, 1997, Archaea and the origin〚s〛 of DNA replication proteins, Cell, 89, 995, 10.1016/S0092-8674(00)80285-8
Doolittle W.F., You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes, Trends Genet. 14 (1998) 307-311
Jain, 1999, Horizontal gene transfer among genomes: the complexity hypothesis, Proc. Natl. Acad. Sci. USA, 96, 3801, 10.1073/pnas.96.7.3801
Aravind, 1998, Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles, Trends Genet., 14, 442, 10.1016/S0168-9525(98)01553-4
Nelson, 1999, Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima, Nature, 399, 323, 10.1038/20601
Logsdon, 1999, Thermotoga heats up lateral gene transfer, Curr. Biol., 7, R747, 10.1016/S0960-9822(99)80474-6
Forterre, 2000, Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from archaea to bacteria, Trends Genet., 16, 152, 10.1016/S0168-9525(00)01980-6
Doolittle, 1999, Phylogenetic classification and the universal tree, Science, 284, 2124, 10.1126/science.284.5423.2124
Glansdorff, 2000, About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal, Mol. Microbiol., 38, 177, 10.1046/j.1365-2958.2000.02126.x
Snel, 1999, Genome phylogeny based on gene content, Nat. Genet., 21, 108, 10.1038/5052
Fitz-Gibbon, 1999, Whole genome-based phylogenetic analysis of free-living microorganisms, Nucleic Acids Res., 27, 4218, 10.1093/nar/27.21.4218
Lin, 2000, Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels, Genome Res., 10, 808, 10.1101/gr.10.6.808
Olsen, 1997, Archaeal genomics: an overview, Cell, 89, 991, 10.1016/S0092-8674(00)80284-6
Forterre, 1997, Archaea: what can we learn from their sequences ?, Curr. Opin. Genet. Dev., 7, 764, 10.1016/S0959-437X(97)80038-X
Kollman, 2000, Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs, J. Mol. Evol., 51, 173, 10.1007/s002390010078
Forterre, 1999, Where is the root of the universal tree of life ?, Bioessays, 21, 871, 10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-Q
Matte-Tailliez, 2000, Mining archaeal proteomes for eukaryotic proteins with novel functions: the PACE case,, Trends Genet., 16, 533, 10.1016/S0168-9525(00)02137-5
http://www-archbac.u-psud.fr/projects/pace/paceproteins.html
Woese, 1977, The concept of cellular evolution, J. Mol. Evol., 10, 1, 10.1007/BF01796132
Penny, 1999, The nature of the last universal common ancestor, Curr. Opin. Genet. Dev., 9, 672, 10.1016/S0959-437X(99)00020-9
Mushegian, 1996, A minimal gene set for cellular life derived by comparison of complete bacterial genomes, Proc. Natl. Acad. Sci. USA, 93, 10268, 10.1073/pnas.93.19.10268
Woese, 1987, Bacterial evolution, Microbiol. Rev., 51, 221, 10.1128/MR.51.2.221-271.1987
Leipe, 1999, Did DNA replication evolve twice independently?, Nucleic Acids Res., 27, 3389, 10.1093/nar/27.17.3389
Forterre, 1999, Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins, Mol. Microbiol., 33, 457, 10.1046/j.1365-2958.1999.01497.x
Villarreal, 2000, A hypothesis for DNA viruses as the origin of eukaryotic replication proteins, J. Virol., 74, 7079, 10.1128/JVI.74.15.7079-7084.2000
Hendrix, 1999, Evolution : the long evolutionary reach of viruses, Curr. Biol., 9, R914, 10.1016/S0960-9822(00)80103-7
Woese, 1998, The universal ancestor, Proc. Natl. Acad. Sci. USA, 95, 6854, 10.1073/pnas.95.12.6854
