Genomic and phylogenetic traits of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses)

Annals of Microbiology - Tập 64 - Trang 1453-1456 - 2013
Iyo Takemura-Uchiyama1, Jumpei Uchiyama1,2, Shin-ichiro Kato3, Takako Ujihara4, Masanori Daibata1,2, Shigenobu Matsuzaki1,2
1Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
2Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi University, Kochi, Japan
3Research Institute of Molecular Genetics, Kochi University, Kochi, Japan
4Science Research Center, Kochi University, Kochi, Japan

Tóm tắt

The genomes of Staphylococcus phages S25-3 and S25-4 (family Myoviridae, genus Twort-like viruses) were sequenced and analyzed from an evolutionary perspective. The genome-based phylogeny and genome analyses of phages S25-3 and S25-4 showed that they had diverged evolutionarily from the majority of this viral genus based on the presence of mobile genetic elements, i.e., a putative transposase and the homing endonuclease I-MsaI. These results suggest that genetic elements such as transposases and homing endonucleases are likely to be involved with the evolution of some Twort-like phages, including phages S25-3 and S25-4.

Tài liệu tham khảo

Cui Z, Song Z, Wang Y, Zeng L, Shen W, Wang Z, Li Q, He P, Qin J, Guo X (2012) Complete genome sequence of wide-host-range Staphylococcus aureus phage JD007. J Virol 86:13880–13881 Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147 Deghorain M, Van Melderen L (2012) The Staphylococci phages family: an overview. Viruses 4:3316–3335 Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287 Gu J, Liu X, Lu R, Li Y, Song J, Lei L, Sun C, Feng X, Du C, Yu H, Yang Y, Han W (2012) Complete genome sequence of Staphylococcus aureus bacteriophage GH15. J Virol 86:8914–8915 Gu J, Liu X, Yang M, Li Y, Sun C, Lu R, Song J, Zhang Q, Lei L, Feng X, Du C, Yu H, Yang Y, Han W (2013) Genomic characterization of lytic Staphylococcus aureus phage GH15: providing new clues to intron shift in phages. J Gen Virol 94:906–915 Kim MS, Myung H (2012) Complete genome of Staphylococcus aureus phage SA11. J Virol 86:10232 Kirby AE (2012) Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 7:e51017 Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M (2011) Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4:643–650 Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102:5174–5179 Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Glowacka A (2012) Genomics of staphylococcal Twort-like phages–potential therapeutics of the post-antibiotic era. Adv Virus Res 83:143–216 Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219 Moellering RC Jr (2012) MRSA: the first half century. J Antimicrob Chemother 67:4–11 O'Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G + C content. J Bacteriol 186:2862–2871 Raghavan R, Minnick MF (2009) Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol 191:6193–6202 Roberts AP, Chandler M, Courvalin P, Guédon G, Mullany P, Pembroke T, Rood JI, Smith CJ, Summers AO, Tsuda M, Berg DE (2008) Revised nomenclature for transposable genetic elements. Plasmid 60:167–173 Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Struct Fold Des 19:7–15 Takemura-Uchiyama I, Uchiyama J, Kato S, Inoue T, Ujihara T, Ohara N, Daibata M, Matsuzaki S (2013) Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model. FEMS Microbiol Lett 347:52–60 Twort FW (1915) An Investigation on the nature of ultra-microscopic viruses. Lancet 186:1241–1243 Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S (2008) In silico and in vivo evaluation of bacteriophage ϕEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 74:4149–4163 Vandersteegen K, Kropinski AM, Nash JH, Noben JP, Hermans K, Lavigne R (2013) Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. J Virol 87:3237–3247 Vandersteegen K, Mattheus W, Ceyssens PJ, Bilocq F, De Vos D, Pirnay JP, Noben JP, Merabishvili M, Lipinska U, Hermans K, Lavigne R (2011) Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 6:e24418