Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement

Heredity - Tập 116 Số 4 - Trang 395-408 - 2016
J E Spindel1, Hamida Begum2, Devrim Akdemir1, B. C. Y. Collard2, Edilberto D. Redoña2, Jean‐Luc Jannink3, Susan R. McCouch1
1Department of Plant Breeding and Genetics, 240 Emerson Hall, Cornell University, Ithaca, NY, USA
2Department of Plant Breeding, Genetics and Biotechnology, International Rice Research Institute, Los Baños, Philippines
3USDA-ARS, North Atlantic Ares, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes RR et al. (2014). SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res 43 (Database issue): D1023–D1027.

Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA, Jannink J-L . (2013). Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci 53: 1894–1906.

Begum H, Spindel J, Lalusin AG, Borromeo TH, Gregorio GB, Hernandez JE et al. (2015). Association mapping and genomic selection in rice (Oryza sativa): association mapping for yield and other agronomic traits in elite, tropical rice breeding lines. PLoS One 10: 1371.

Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57: 289–300.

Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P et al. (2014). Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127: 2619–2633.

Bernardo R . (2008). Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48: 1649.

Bernardo R . (2010). Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50: 624–627.

Bernardo R . (2014). Genomewide selection when major genes are known. Crop Sci 54: 68.

Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B et al. (2015). Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55: 154–163.

Breiman L . (2001). Random forests. Mach Learn 45: 5–32.

Burgueño J, de los Campos G, Weigel K, Crossa J . (2012). Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52: 707.

Collard BC, Mackill DJ . (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363: 557–572.

Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK . (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169–196.

Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J et al. (2014). Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity (Edinb) 112: 48–60.

Daetwyler HD, Calus MP, Pong-Wong R, de Los Campos G, Hickey JM . (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347–365.

Desta ZA, Ortiz R . (2014). Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19: 592–601.

Endelman JB . (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250–255.

Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R . (2009). Additive genetic variability and the Bayesian alphabet. Genetics 183: 347–363.

Gianola D, van Kaam JB . (2008). Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178: 2289–2303.

Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92–100.

Guo Z, Tucker D, Basten C, Gandhi H, Ersoz E, Guo B et al. (2014). The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127: 749–762.

Heffner EL, Sorrells ME, Jannink JL . (2009). Genomic selection for crop improvement. Crop Sci 49: 1–12.

Hennig C . (2015). CRAN.

Heslot N, Jannink J-L, Sorrells ME . (2013). Using genomic prediction to characterize environments and optimize prediction accuracy in applied breeding data. Crop Sci 53: 921.

Heslot N, Jannink J-L, Sorrells ME . (2015). Perspectives for genomic selection applications and research in plants. Crop Sci 55: 1–12.

Heslot N, Yang H-P, Sorrells ME, Jannink J-L . (2012). Genomic selection in plant breeding: a comparison of models. Crop Sci 52: 146.

Huang X, Lu T, Han B . (2013). Resequencing rice genomes: an emerging new era of rice genomics. Trends Genetics 29: 225–232.

Kaufman L, Rousseeuw PJ . (1990) Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley.

Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW . (1997). Epistasis for three grain yield components in rice. Genetics 145: 453–465.

Lipka AE, Kandianis CB, Hudson ME, Yu J, Drnevich J, Bradbury PJ et al. (2015). From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Curr Opin Plant Biol 24: 110–118.

Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink JL et al. (2015). Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model. G3 (Bethesda) 5: 569–582.

Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H et al. (2011). Genomic Selection in Plant Breeding et al. Advances in Agronomy, Vol. 110, pp 77–123.

Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG et al. (2013). Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection: a study in cassava. Crop Sci 53: 1312.

Massman JM, Gordillo A, Lorenzana RE, Bernardo R . (2013a). Genomewide predictions from maize single-cross data. Theor Appl Genet 126: 13–22.

Massman JM, Jung HJG, Bernardo R . (2013b). Genomewide Selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53: 58–66.

McCouch S, Baute GJ, Bradeen J, Bramel P, Bretting PK, Buckler E et al. (2013). Agriculture: feeding the future. Nature 499: 23–24.

McCouch SR, McNally KL, Wang W, Sackville Hamilton R . (2012). Genomics of gene banks: a case study in rice. Am J Bot 99: 407–423.

Meuwissen THE, Hayes BJ, Goddard ME . (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.

Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M et al. (2015). Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128: 41–53.

Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K et al. (2007). The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35 (Database issue): D883–D887.

Owens BF, Lipka AE, Magallanes-Lundback M, Tiede T, Diepenbrock CH, Kandianis CB et al. (2014). A foundation for provitamin a biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198: 1699–1716.

Perez-Rodriguez P, Gianola D, Gonzalez-Camacho JM, Crossa J, Manes Y, Dreisigacker S . (2012). Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3 (Bethesda) 2: 1595–1605.

Ronald P, Leung H . (2002). The most precious things are not jade and pearls. Science 296: 58–59.

Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells M . (2012). Evaluation of genomic prediction methods for fusarium head blight resistance in wheat. Plant Genome 5: 51–61.

Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H et al. (2014). Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 127: 1441–1448.

Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E et al. (2015). Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11: e1004982.

Thomson MJ . (2014). High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2: 195–212.

Thomson MJ, Edwards JD, Septiningsih EM, Harrington SE, McCouch SR . (2006). Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple Sub-QTL. Genetics 172: 2501–2514.

Varshney RK, Terauchi R, McCouch SR . (2014). Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12: e1001883.

Yu HH, Xie WB, Li J, Zhou FS, Zhang QF . (2014). A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J 12: 28–37.

Zhang X, Perez-Rodriguez P, Semagn K, Beyene Y, Babu R, Lopez-Cruz MA et al. (2015). Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114: 291–299.

Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He JL et al. (2014). Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS One 9: e93017.

Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH et al. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2: 467.

Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC . (2014). Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112: 638–645.

Zhou X, Stephens M . (2012). Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44: 821–824.